Thickness Dependence of Ferroelectric Properties for Ferroelectric Random Access Memory Based on Poly(vinylidene fluoride-trifluoroethylene) Ultrathin Films

2015 ◽  
Vol 488 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Xiaoli Du ◽  
Manping Zhao ◽  
Guanglong Chen ◽  
Xiuli Zhang
1997 ◽  
Vol 493 ◽  
Author(s):  
P. C. Joshi ◽  
S. O. Ryu ◽  
S. Tirumala ◽  
S. B. Desu

ABSTRACTThin films of layered-structure solid-solution material, (1−x)SrBi2Ta2O9−xBi3Ti(TayNb1−y)O9, have shown much improved ferroelectric properties compared to SrBi2Ta2O9, a leading candidate material for ferroelectric random access memory applications. The higher Pr, higher Tc, and lower crystallization temperature of the thin films of solid solution material promise to solve many problems with the present materials of interest. The films were fabricated by metalorganic solution deposition technique using room temperature processed alkoxide-carboxylate precursor solution and characterized in terms of structural, dielectric, and ferroelectric properties. It was possible to obtain a pyrochlore free crystalline phase at an annealing temperature of 600 °C. The effects of annealing temperature and excess Bi content on the film microstructure and properties were analyzed. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors using Pt as the top and bottom electrode. It was possible to obtain good ferroelectric properties on films annealed at 650 °C. For example, thin films with 0.7SrBi2Ta2O9-0.3Bi3TiTaO9 composition, which were annealed at 650 °C, exhibited typical 2Pr and Ec values of 12.4 μC/cm2 and 80 kV/cm, respectively. The films exhibited low leakage current density, good fatigue characteristics under bipolar stressing at least up to 1010 switching cycles, and good memory retention characteristics after about 106 s of memory retention indicating a favorable behavior for memory applications.


2001 ◽  
Vol 665 ◽  
Author(s):  
Feng Xia ◽  
H.S. Xu ◽  
Babak Razavi ◽  
Q. M. Zhang

ABSTRACTFerroelectric polymer thin films are attractive for a wide range of applications such as MEMS, IR sensors, and memory devices. We present the results of a recent investigation on the thickness dependence of the ferroelectric properties of poly(vinylidene fluoridetrifluoroethylene) copolymer spin cast films on electroded Si substrate. We show that as the film thickness is reduced, there exist two thickness regions. For films at thickness above 100 nm, the thickness dependence of the ferroelectric properties can be attributed to the interface effect. However, for thinner films, there is a large change in the ferroelectric properties such as the polarization level, the coercive field, and polarization switching speed, which is related to the large drop of the crystallinity in the ultrathin film region (below 100 nm). The results from Xray, dielectric measurement, and AFM all indicate that there is a threshold thickness at about 100 nm below which the crystallinity in the film reduces abruptly.


Sign in / Sign up

Export Citation Format

Share Document