Research on micro-texture placement position and cutting performance of negative chamfering ball-end milling cutter

2021 ◽  
Vol 580 (1) ◽  
pp. 251-267
Author(s):  
Yang Shucai ◽  
Zhang Naishi ◽  
Su Shuai ◽  
Sun Jiankun ◽  
Wang Tianjiao
2019 ◽  
Vol 9 (14) ◽  
pp. 2915 ◽  
Author(s):  
Guangyue Wang ◽  
Xianli Liu ◽  
Weijie Gao ◽  
Bingxin Yan ◽  
Tao Chen

Problems such as low machining efficiency, severe tool wear and difficulty in safeguarding surface quality always exist in the machining process of titanium alloy with ball-end milling cutters. To address these issues, the design and manufacture of a revolving cycloid milling cutter for titanium alloy processing were studied in this paper. Firstly, the mathematical model of the revolving cycloid milling cutter contour surface was established. The parametric equation of an orthogonal helix cutting edge curve of a revolving cycloid milling cutter is presented. Then, the bottom boundary curve of the rake face is introduced. The five-axis grinding trajectory equation of revolving cycloid milling cutter rake face was derived based on the edge curve equation and coordinate transformation. Next, fabricating the revolving cycloid milling cutter and detecting the grinding accuracy of tool profile and geometric angle were performed. At last, a contrast test regarding the performance of the revolving cycloid milling cutter and the ball-end milling cutter in cutting titanium alloy TC11 was carried out. According to the test results, in comparison to the ball-end milling cutter, the revolving cycloid milling cutter had a smaller ratio of the axial force to the tangential force. Moreover, its flank face wore more slowly and evenly. As a result, a good surface processing quality can be maintained even under larger wear conditions, demonstrating an outstanding cutting performance.


Author(s):  
Shucai Yang ◽  
Pei Han ◽  
Xiao Liu ◽  
Xin Tong

According to the difficult machinability of titanium alloy, the research shows that the surface micro-textured technology can reduce the friction force and cutting temperature in the cutter-workpiece contact area. Starting with the precise preparation of micro textures by laser processing technology, this paper takes ball-end milling cutter milling titanium alloy as the research object, studies the influence of laser processing parameters on micro-textured size parameters, and optimizes the laser processing parameters as follows: laser power P = 40 W, scanning speed V = 1700 mm/s, scanning times N = 7 times, and spot diameter D = 40 μm. The distribution of temperature field and stress field during laser processing is analyzed, and the accuracy of the influence rule of laser processing parameters on micro-textured size parameters is verified, thus realizing the purpose of accurately preparing micro textures. The interactive influence of mesoscopic geometric features on the cutting performance of ball-end milling cutter is analyzed, and the genetic algorithm is used to optimize the parameters. The results show that the main factor affecting the force-heat characteristics of the tool is the blunt edge radius, and the interaction between the blunt radius of the cutting edge and the distance from blade is obvious. The optimized mesoscopic geometric parameters are as follows: the blunt edge radius is 20 μm, and the distance from blade is 110 μm, the micro-textured diameter is 30 μm, and the micro-textured spacing is 175 μm. The research content of this paper lays a foundation for efficient cutting of titanium alloy materials.


2020 ◽  
Vol 10 (3) ◽  
pp. 818
Author(s):  
Minli Zheng ◽  
Chunsheng He ◽  
Shucai Yang

The insertion of micro-textures plays a role in reducing friction and increasing wear resistance of the cutters, which also has a certain impact on the stress field of the cutter during milling. Therefore, in order to study the mechanisms of friction reduction and wear resistance of micro-textured cutters in high speed cutting of titanium alloys, the dynamic characteristics of the instantaneous stress field during the machining of titanium alloys with micro-textured cutters were studied by changing the distribution density of the micro-textures on the cutter. First, the micro-texture insertion area of the ball-end milling cutter was theoretically analyzed. Then, variable density micro-textured ball-end milling cutters and non-texture cutters were used to cut titanium alloy, and the mathematical model of milling force and cutter-chip contact area was established. Then, the stress density functions of different micro-texture density cutters and non-texture cutters were established to simulate the stress fields of variable density micro-textured ball-end milling cutters and non-texture cutters. Finally, the genetic algorithm was used to optimize the variable density distribution of micro-textured cutters in which the instantaneous stress field of the cutters was taken as the optimization objective. The optimal solution for the variable density distribution of the micro-textured cutter in the cutter-chip tight contact area was obtained as follows: the texture distribution densities in the first, second, and third areas are second, and third areas are 0.0905, 0.0712, and 0.0493, respectively.


2010 ◽  
Vol 37-38 ◽  
pp. 1050-1055
Author(s):  
Jiang Hua Ge ◽  
Ping Zhang ◽  
Xiu Lin Sui ◽  
Ping Zhao

In this paper, a new mathematical model and modeling method of ball-end milling cutter which satisfies the request of physical simulation in virtual NC machining system are proposed. The accurate expressions of the cutting edge are presented. The precise functional surface model of ball-end cutter is developed. And the 3-D visualization for ball-end milling cutter in virtual NC machining is implemented. The model can provide necessary and accurate geometric information for physical simulation and has been applied in milling force simulation. It laid the foundation for integration of geometric simulation and physical simulation.


2014 ◽  
Vol 800-801 ◽  
pp. 484-488
Author(s):  
Cai Xu Yue ◽  
Fu Gang Yan ◽  
Lu Bin Li ◽  
Hai Yan You ◽  
Qing Jie Yu

Ball-end milling cutter is widely used in machining complex surface parts , and it is need to select a reasonable geometric parameters of the milling cutter for different work piece materials and shapes and cutting parameters. This article is based on UG secondary development technology to develop the Multi-blade ball-end milling cutter parametric design system, it is automatic, fast and efficient to build all kinds of parameters of double, three and four blades ball-end milling cutter model required for user.


2018 ◽  
Vol 764 ◽  
pp. 383-390 ◽  
Author(s):  
Quan Qi Xin ◽  
Tai Yong Wang ◽  
Zhi Qiang Yu ◽  
Hong Yan Hu

In this paper, the mathematical model of "S" - shaped cutting-edge curve is optimized, and the position and orientation of the grinding wheel of the first and second flank of the ball end milling cutter are calculated, The correctness of the algorithm is verified by VERICUT simulation.


Sign in / Sign up

Export Citation Format

Share Document