Full-color antiferroelectric liquid crystal displays with high contrast ratio

1996 ◽  
Vol 179 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Koji Nakamura ◽  
Akira Takeuchi ◽  
Norio Yamamoto ◽  
Yuichiro Yamada ◽  
Yoshi-Ichi Suzuki ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41693-41702
Author(s):  
Yunho Shin ◽  
Jinghua Jiang ◽  
Guangkui Qin ◽  
Qian Wang ◽  
Ziyuan Zhou ◽  
...  

A polymer stabilized LC based light waveguide display is reported. Performance is improved by patterned photo-polymerization or electrode. It has high brightness, ultrafast switching time, high contrast ratio, and high transmittance for transparent and augmented displays.


2011 ◽  
Vol 181-182 ◽  
pp. 281-284
Author(s):  
Zhi Ren ◽  
Song Tao Li ◽  
Xi Pai Liu

The performance of a reflective chiral-homeotropic (R-CH) liquid crystal (LC) is simulated by the dynamic parameter space method. The normally black reflective chiral-homeotropic display shows weak color dispersion, high contrast ratio, and fast response time.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (3) ◽  
pp. 35-38 ◽  
Author(s):  
Jun-ichi Hanna ◽  
Isamu Shimizu

In today's world of increasing office automation and computer-aided personal-communications systems, display devices play a very important role as person-machine interfaces. Above all, high-definition, full-color flat-panel displays will be key devices in the near future when processing huge amounts of information—including pictorial images via computer networks and telecommunication systems that transcend the present limitations of time and place—will be possible.Passive-matrix liquid-crystal displays (LCDs) represent the most widely used choice for portable display devices. Figure 1 illustrates the essential components and operating principle of a typical LCD. Each pixel is addressed by the top- and bottom-line electrodes of the cell based on information signals, producing a light image. By installing a color filter of red, green, or blue for each pixel, full-color images can be displayed. However, the essential problems of crosstalk among pixels and low response speed become serious with an increase in the number of pixels, resulting in a low contrast ratio and failure of the display to keep up with the signals.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 739 ◽  
Author(s):  
Cheng-Kai Liu ◽  
Wei-Hsuan Chen ◽  
Chung-Yu Li ◽  
Ko-Ting Cheng

The methods to enhance contrast ratios (CRs) in scattering-type transflective liquid crystal displays (ST-TRLCDs) based on polymer-network liquid crystal (PNLC) cells are investigated. Two configurations of ST-TRLCDs are studied and are compared with the common ST-TRLCDs. According to the comparisons, CRs are effectively enhanced by assembling a linear polarizer at the suitable position to achieve better dark states in the transmissive and reflective modes of the reported ST-TRLCDs with the optimized configuration, and its main trade-off is the loss of brightness in the reflective modes. The PNLC cell, which works as an electrically switchable polarizer herein, can be a PN-90° twisted nematic LC (PN-90° TNLC) cell or a homogeneous PNLC (H-PNLC) cell. The optoelectric properties of PN-90° TNLC and those of H-PNLC cells are compared in detail, and the results determine that the ST-TRLCD with the optimized configuration using an H-PNLC cell can achieve the highest CR. Moreover, no quarter-wave plate is used in the ST-TRLCD with the optimized configuration, so a parallax problem caused by QWPs can be solved. Other methods for enhancing the CRs of the ST-TRLCDs are also discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Chuen-Lin Tien ◽  
Rong-Ji Lin ◽  
Shang-Min Yeh

Light leakage from liquid crystal displays in the dark state is relatively larger and leads to a degraded contrast ratio and color shift. This work describes a novel colorimetric model based on the Muller matrix that includes depolarization of light propagating through liquid crystal molecules, polarizers, and color filters. In this proposed model, the chromaticity can be estimated in the bump and no-bump regions of an LCD. We indicate that the difference between simulation and measurement of chromaticity is about 0.01. Light leakage in the bump region is three times that in no-bump region in the dark state.


2012 ◽  
Vol 51 (12) ◽  
pp. 2178 ◽  
Author(s):  
Taehyung Kim ◽  
Joong Ha Lee ◽  
Byung Wok Park ◽  
Ki-Han Kim ◽  
Tae-Hoon Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document