CONJUNCTION OF ORE- AND OIL-FORMING SYSTEMS IN SEDIMENTARY BASINS AND THE PREDICTION OF ORE DEPOSITS

1991 ◽  
Vol 33 (8) ◽  
pp. 822-829 ◽  
Author(s):  
D. I. Pavlov ◽  
D. I. Gorzhevskiy ◽  
G. A. Goleva ◽  
M. K. Kalinko ◽  
A. A. Kartsev ◽  
...  
2020 ◽  
Author(s):  
Mohamed Abdrabou ◽  
Maha Abdelazeem ◽  
Mohamed Gobashy

<p>Geophysical data such as gravity data can be inverted to get a subsurface image, which depicts the subsurface distribution of physical property. Consequently, inversion of geophysical data has an effective role for interpreting measured geophysical anomalies in hydrocarbons and mineral applications. Interest about ore deposits exploration and sedimentary basins interpretation is associated with their economic importance. The presence of sedimentary basins gives lower amplitude of gravity anomalies with negative signals, due to the negative density contrast as these sedimentary basins have lower density than that of the neighboring basement rocks. In prospecting ore deposits, studying the spatial distributions of densities in the subsurface is essential of significance.Two dimensional forward modelling strategy can be done via locating the rectangular cells with fixed size directly underneath the location of the observed data points using regular grid discretization. Density vector of the subsurface rectangular cells are obtained via solving the 2D gravity inverse problem by optimizing an objective function (i.e., the differences between observed and inverted residual gravity data sets). In this work, a hybrid algorithm merging a bat (BAT) algorithm with the preconditioned conjugate gradient (PCG) method is suggested as a mean for inverting surface gravity anomalies to obtain the density distribution in the subsurface. Like the hybrid, minimization algorithm has the capability to make use of the advantages of both two techniques. In this hybrid algorithm, the BAT algorithm was utilized to construct an initial solution for the PCG technique. The BAT optimizer acts as a rapid build-up of the model, whereas the second modifies the finer model approximated solution. This modern algorithm was firstly applied on a free-noise synthetic data and to a noisy data with three different levels of random noise, and good results obtained through the inversion. The validity and applicability of our algorithm are applied to real residual gravity anomalies across the San Jacinto graben in southern California, USA, and Sierra Mayor - Sierra Pinta graben, USA and prospecting of the Poshi Cu-Ni deposits, Xinjiang, northwest China. The obtained results are in excellent accordance with those produced by researchers in the published literature.</p><p> </p><p><strong>Keywords: </strong>Gravity data, 2D Inversion, BAT algorithm, Preconditioned Conjugate Gradient, Sedimentary Basins.</p>


1984 ◽  
Vol 121 (5) ◽  
pp. 443-463 ◽  
Author(s):  
R. S. Haszeldine

AbstractThree theories have been proposed for the origin of Carboniferous basins in Britain: megashear; tension from Rheic Ocean subduction; tension from rifting of the North Atlantic. The first two hypotheses are rejected because they do not explain the Carboniferous volcanism, Stephanian dyke swarm, Boreal marine transgressions during the late Carboniferous and Permian, Carboniferous sedimentary basin histories, basin types or basin orientations.Carboniferous volcanics were rift-related due to crustal thinning, which also resulted in the formation of sedimentary basins in the British Isles and a marine transgression of Tethyan faunas. Newly formed Carboniferous fracture lines and basin orientations showed that tension varied between east–west and northwest–southeast. Crustal fracturing in the latest Dinantian, possibly due to collision of microcontinents in the closing Rheic and Phoibic oceans with North America, led to the synchronous initiation of rift basins in East Greenland, elevation of source areas for the Millstone Grit of the British Isles, and formation of transform fault zones near Svalbard and North Spain. The narrow, rapidly subsiding, quickly changing ‘fosse’ basins which formed in these transcurrent fault zones contrast with the coeval stable, slower subsiding rift-parallel ‘saucer’ basins of the British Isles. Variations of subsidence rates in all these basins allow interpretations of crustal stress history. Brittle fracturing in the Westphalian C formed the first oceanic crust, but free oceanic spreading from Spain to southwest of the Faeroes only occurred after Stephanian dyke intrusion and crustal thinning at the Faeroes. The Norwegian Sea underwent continental crustal thinning. Ocean spreading and crustal thinning ceased in latest Stephanian times.Boreal marine transgressions advanced down the newly thinned Norwegian Sea, firstly along its northern part and then reaching the North Sea basins and Germany in the Rotliegendes and Zechstein. Synsedimetary ore deposits formed during early tensional fracturing of the crust; thick coal sequences formed in rift-parallel basins during clastic source decay of elevated rift margins; oil source rocks formed along narrow oceanic or continental rifts from the Westphalian C onwards.


2006 ◽  
Vol 43 (9) ◽  
pp. 1331-1340 ◽  
Author(s):  
Jianwen Yang

A finite element algorithm is presented to simulate fully coupled transient fluid flow, heat, and solute transport in discretely fractured porous media, and yield the regional-scale free thermohaline convection patterns for the McArthur Basin in northern Australia. Numerical results indicate that salinity variation throughout the basin has an important influence on fluid migration and the thermal regime. The spatial and temporal distribution of saline fluids can either promote or impede free convection. Relatively saline conditions (10 wt.%) at the basin floor favour free convection; whereas, high salinities at depth suppress the development of convective hydrothermal systems. When salinity increases with depth, a higher geothermal gradient is required to induce and maintain significant fluid circulation. The implication is that sedimentary-exhalative ore deposits are more easily formed when evaporation first produces surface brines, and then these brines sink and displace pore waters in the basin.


Author(s):  
Craig M. Bethke

Geothermometry is the use of a fluid’s (or, although not discussed here, a rock’s) chemical composition to estimate the temperature at which it equilibrated in the subsurface. The specialty is important, for example, in exploring for and exploiting geothermal fields, characterizing deep groundwater flow systems, and understanding the genesis of ore deposits. Several chemical geothermometers are in widespread use. The silica geothermometer (Fournier and Rowe, 1966) works because the solubilities of the various silica minerals (e.g., quartz and chalcedony, SiO2) increase monotonically with temperature. The concentration of dissolved silica, therefore, defines a unique equilibrium temperature for each silica mineral. The Na-K (White, 1970) and Na-K-Ca (Fournier and Truesdell, 1973) geothermometers take advantage of the fact that the equilibrium points of cation exchange reactions among various minerals (principally, the feldspars) vary with temperature. In applying these methods, it is necessary to make a number of assumptions or corrections (e.g., Fournier, 1977). First, the minerals with which the fluid reacted must be known. Applying the silica geothermometer assuming equilibrium with quartz, for example, would not give the correct result if the fluid’s silica content is controlled by reaction with chalcedony. Second, the fluid must have attained equilibrium with these minerals. Many studies have suggested that equilibrium is commonly approached in geothermal systems, especially for ancient waters at high temperature, but this may not be the case in young sedimentary basins like the Gulf of Mexico basin (Land and Macpherson, 1992). Third, the fluid’s composition must not have been altered by separation of a gas phase, mineral precipitation, or mixing with other fluids. Finally, corrections may be needed to account for the influence of certain dissolved components, including CO2 and Mg++, which affect the equilibrium composition (Paces, 1975; Fournier and Potter, 1979; Giggenbach, 1988). Using geochemical modeling, we can apply chemical geothermometry in a more generalized manner. By utilizing the entire chemical analysis rather than just a portion of it, we avoid some of the restricting assumptions mentioned in the preceding paragraph (see Michard et al., 1981; Michard and Roekens, 1983; and especially Reed and Spycher, 1984). Having constructed a theoretical model of the fluid in question, we can calculate the saturation state of each mineral in the database, noting the temperature at which each is in equilibrium with the fluid.


2000 ◽  
Vol 12 (3-4) ◽  
pp. 219-226 ◽  
Author(s):  
P. Bellingham ◽  
N. White

Sign in / Sign up

Export Citation Format

Share Document