Fluid-Inclusion Evidence for an Upper-Mantle Origin for Green Clinopyroxenes in Late Cenozoic Basanites from the Nógrád-Gömör Volcanic Field, Northern Hungary/Southern Slovakia

1998 ◽  
Vol 40 (9) ◽  
pp. 765-773 ◽  
Author(s):  
Cs. Szabó ◽  
R. J. Bodnar
2020 ◽  
Author(s):  
Thomas Pieter Lange ◽  
Zsófia Pálos ◽  
Levente Patkó ◽  
Márta Berkesi ◽  
Nóra Liptai ◽  
...  

<p>Amphibole is one of the most abundant ’water’-bearing minerals in the Earth’s upper mantle. Amphiboles occur as interstitial grains, lamellae within pyroxenes or as daughter minerals within fluid inclusions.  Most commonly amphibole formation is related to mantle metasomatism, where the agent has a subducted slab (e.g. Manning 2004) or an asthenospheric origin (e.g. Berkesi et al. 2019).  After the formation of fluid inclusions, a subsolidus interaction can take place where the H<sub>2</sub>O content of fluid inclusions may crystallize pargasite (e.g. Plank et al. 2016).</p><p>Here we present amphibole lamellae formation in mantle xenoliths from the Persani Mountains Volcanic Field that is interrelated to a reaction between fluid inclusions and host clinopyroxene.  Newly formed amphibole lamellae occur only in the surroundings of the fluid inclusions and grow within the host clinopyroxene in a preferred crystallographic direction.  Studied lamellae do not reach the rim of the host mineral implying that components needed for formation of amphibole lamellae in clinopyroxene could have only originated from the fluid inclusion itself.  We measured the major element composition of amphibole lamellae and host clinopyroxene (1) and used Raman spectroscopy and FIB-SEM on fluid inclusion study situated next to the lamellae (2).  Results support the hypothesis that chemical components (dominantly H<sup>+</sup>) migrated sub-solidus from the fluid inclusion into the host mineral after fluid entrapment via subsolidus interaction.  Beyond the clinopyroxene-hosted fluid inclusions, fluid inclusions in orthopyroxenes were also studied as a reference.  Our study shows that post-entrapment diffusion from a fluid inclusion into the host mineral changes the solid/fluid ratio of the mantle  which could modify the rheology of the lithospheric mantle.</p><p>Berkesi, M. et al. 2019. Chemical Geology, 508, 182-196.</p><p>Kovács et al. (2017) Acta Geodaetica et Geophysica, 52(2), 183-204.</p><p>Manning C. E. 2004. Earth and Planetary Science Letters, 223, 1-16.</p><p>Plank, T. A. et al. 2016. In AGU Fall Meeting Abstracts.</p>


Nature ◽  
1987 ◽  
Vol 325 (6105) ◽  
pp. 605-607 ◽  
Author(s):  
Thomas Staudacher
Keyword(s):  

2006 ◽  
Vol 51 (3-4) ◽  
pp. 131-171 ◽  
Author(s):  
Rob Westaway ◽  
Hervé Guillou ◽  
Sema Yurtmen ◽  
Anthony Beck ◽  
David Bridgland ◽  
...  

Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1211-1239 ◽  
Author(s):  
Thomas van der Werf ◽  
Vasileios Chatzaras ◽  
Leo Marcel Kriegsman ◽  
Andreas Kronenberg ◽  
Basil Tikoff ◽  
...  

Abstract. The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene–Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750–890 °C and pressures of 400–560 MPa, corresponding to 15–22 km depth. A hot crustal geotherm of 40 ° C km−1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12–33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12–17 MPa) in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1–1.3×1020 Pa ⋅ s for the high temperature conditions (890 °C) in the lower crust. Significantly lower viscosities in the range of 1016–1019 Pa ⋅ s, were estimated using flow laws for wet plagioclase. The shallow upper mantle has a low viscosity of 5.7×1019 Pa ⋅ s, which indicates the lack of an upper-mantle lid beneath northern Baja California. Our data show that during post-seismic transients, the upper mantle and the lower crust in the Pacific–Baja California plate boundary are characterized by similar and low differential stress. Transient viscosity of the lower crust is similar to the viscosity of the upper mantle.


2019 ◽  
Vol 62 (17) ◽  
pp. 2125-2145 ◽  
Author(s):  
Ming Lei ◽  
Zhengfu Guo ◽  
Yutao Sun ◽  
Maoliang Zhang ◽  
Lihong Zhang ◽  
...  

1987 ◽  
Vol 24 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Keith Bell ◽  
John Blenkinsop ◽  
S. T. Kwon ◽  
G. R. Tilton ◽  
R. P. Sage

Rb–Sr and U–Pb data from the Borden complex of northern Ontario, a carbonatite associated with the Kapuskasing Structural Zone, indicate a mid-Proterozoic age. A 207Pb/206Pb age of 1872 ± 13 Ma is interpreted as the emplacement age of this body, grouping it with other ca. 1900 Ma complexes that are the oldest known carbonatites associated with the Kapuskasing structure. A 206Pb–238U age of 1894 ± 29 Ma agrees with the Pb–Pb age but has a high mean square of weighted deviates (MSWD) of 42. A Rb–Sr apatite–carbonate–mica whole-rock isochron date of 1807 ± 13 Ma probably indicates later resetting of the Rb–Sr system.An εSr(T) value of −6.2 ± 0.5 (87Sr/86Sr = 0.70184 ± 0.00003) and an εNd(T) value of +2.8 ± 0.4 for Borden indicate derivation of the Sr and Nd from a source with a time-integrated depletion in the large-ion lithophile (LIL) elements. These closely resemble the ε values for Sr and Nd from the Cargill and Spanish River complexes, two other 1900 Ma plutons. The estimated initial 207Pb/204Pb and 206Pb/204Pb ratios from Borden calcites plot significantly below growth curves for average continental crust in isotope correlation diagrams, a pattern similar to those found in mid-ocean ridge basalts (MORB) and most ocean-island volcanic rocks, again suggesting a source depleted in LIL elements. The combined Nd and Sr, and probably Pb, data strongly favour a mantle origin for the Borden complex with little or no crustal contamination and support the model of Bell et al. that many carbonatites intruded into the Canadian Shield were derived from an ancient, LIL-depleted subcontinental upper mantle.


2001 ◽  
Vol 65 (2) ◽  
pp. 277-295 ◽  
Author(s):  
C. Sutthirat ◽  
S. Saminpanya ◽  
G. T. R. Droop ◽  
C. M. B. Henderson ◽  
D. A. C. Manning

AbstractAn inclusion of corundum (ruby) was found in a clinopyroxene xenocryst in alkali basalt from the late-Cenozoic Chanthaburi-Trat volcanics of eastern Thailand. The clinopyroxene is fairly sodic, highly aluminous and magnesian (0.12–0.14 Na, 0.31–0.33 AlIV and 0.36–0.40 AlVI per 6(O), and Mg/(Mg+Fe2+) > 0.9)) and is chemically similar to clinopyroxene inclusions in rubies from nearby alluvial gem deposits, suggesting a common origin for the two types of occurrence. Sapphirine (Mg/(Mg+Fe2+) = 0.91–0.94) and garnet (py56–67alm11–18grs18–23) also occur as inclusions in alluvial rubies. Thermodynamic calculation of the equilibrium 2 di + 2 crn = 2 cats + en constrains the temperatures of clinopyroxene + corundum crystallization to between 800 and 1150 ± 100°C. Use of other equilibria as stability limits places the pressures of crystallization between 10 and 25 kbar, implying depths of between 35 and 88 km. The most Fe-rich clinopyroxene crystallized at a pressure in the lower part of the range. The pyropic garnet inclusions in corundum crystallized at pressures of >18 kbar (i.e. at depths > ~63 km).The xenocrystic clinopyroxene could have coexisted in equilibrium with garnet of similar composition to the observed inclusions at the deduced temperatures of crystallization. The rubies probably crystallized in rocks of mafic composition, i.e. garnet-clinopyroxenites or garnet-pyriclasites, within the upper mantle.


Sign in / Sign up

Export Citation Format

Share Document