EEG signals during mouth breathing in a working memory task

2019 ◽  
Vol 130 (5) ◽  
pp. 425-434 ◽  
Author(s):  
Kyung-Jin Lee ◽  
Chan-A Park ◽  
Yeong-Bae Lee ◽  
Hang-Keun Kim ◽  
Chang-Ki Kang
IRBM ◽  
2021 ◽  
Author(s):  
Hamad Javaid ◽  
Rodiya Manor ◽  
Ekkasit Kumarnsit ◽  
Surapong Chatpun

2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Yong-Gi Hong ◽  
Hang-Keun Kim ◽  
Young-Don Son ◽  
Chang-Ki Kang

This study was to investigate the changes in brain function due to lack of oxygen (O2) caused by mouth breathing, and to suggest a method to alleviate the side effects of mouth breathing on brain function through an additional O2 supply. For this purpose, we classified the breathing patterns according to EEG signals using a machine learning technique and proposed a method to reduce the side effects of mouth breathing on brain function. Twenty subjects participated in this study, and each subject performed three different breathings: nose and mouth breathing and mouth breathing with O2 supply during a working memory task. The results showed that nose breathing guarantees normal O2 supply to the brain, but mouth breathing interrupts the O2 supply to the brain. Therefore, this comparative study of EEG signals using machine learning showed that one of the most important elements distinguishing the effects of mouth and nose breathing on brain function was the difference in O2 supply. These findings have important implications for the workplace environment, suggesting that special care is required for employees who work long hours in confined spaces such as public transport, and that a sufficient O2 supply is needed in the workplace for working efficiency.


2008 ◽  
Author(s):  
Alexandra S. Atkins ◽  
Marc G. Berman ◽  
John Jonides ◽  
Patricia A. Reuterlorenz

2018 ◽  
Author(s):  
Anthony Paul Zanesco ◽  
Ekaterina Denkova ◽  
Scott L. Rogers ◽  
William K. MacNulty ◽  
Amishi P. Jha

Cognitive ability is a key selection criterion for entry into many elite professions. Herein, we investigate whether mindfulness training (MT) can enhance cognitive performance in elite military forces. The cognitive effects of a short-form 8-hour MT program contextualized for military cohorts, referred to as Mindfulness-Based Attention Training (MBAT), were assessed. Servicemembers received either a 2-week (n = 40) or 4-week (n = 36) version of MBAT, or no training (NTC, n = 44). Sustained attention and working memory task performance along with self-reported cognitive failures were assessed at study onset (T1) and 8-weeks later (T2). In contrast to both the NTC and 2-week MT groups, the 4-week MT group significantly improved over time on attention and working memory outcome measures. Among the 4-week more so than the 2-week MBAT participants, working memory performance improvements were correlated with their amount of out-of-class MT practice. In addition to these group-wise effects, all participants receiving MBAT decreased in their self-reported cognitive failures from T1 to T2. Importantly, none of these improvements were related to self-reported task motivation. Together, these results suggest that short-form MT, when delivered over a 4-week delivery schedule, may be an effective cognitive training tool in elite military cohorts.


Sign in / Sign up

Export Citation Format

Share Document