Individual differences in self-rated anxiety and respiratory sinus arrhythmia predict performance on a complex working memory task

2019 ◽  
Vol 23 (4) ◽  
pp. 145-255
Author(s):  
Brian Healy ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Elizabeth M. Stoakley ◽  
Karen J. Mathewson ◽  
Louis A. Schmidt ◽  
Kimberly A. Cote

Abstract. Resting respiratory sinus arrhythmia (RSA) is related to individual differences in waking affective style and self-regulation. However, little is known about the stability of RSA between sleep/wake stages or the relations between RSA during sleep and waking affective style. We examined resting RSA in 25 healthy undergraduates during the waking state and one night of sleep. Stability of cardiac variables across sleep/wake states was highly reliable within participants. As predicted, greater approach behavior and lower impulsivity were associated with higher RSA; these relations were evident in early night Non-REM (NREM) sleep, particularly in slow wave sleep (SWS). The current research extends previous findings by establishing stability of RSA within individuals between wake and sleep states, and by identifying SWS as an optimal period of measurement for relations between waking affective style and RSA.


2011 ◽  
Vol 25 (4) ◽  
pp. 164-173 ◽  
Author(s):  
Brian Healy ◽  
Aaron Treadwell ◽  
Mandy Reagan

The current study was an attempt to determine the degree to which the suppression of respiratory sinus arrhythmia (RSA) and attentional control were influential in the ability to engage various executive processes under high and low levels of negative affect. Ninety-four college students completed the Stroop Test while heart rate was being recorded. Estimates of the suppression of RSA were calculated from each participant in response to this test. The participants then completed self-ratings of attentional control, negative affect, and executive functioning. Regression analysis indicated that individual differences in estimates of the suppression of RSA, and ratings of attentional control were associated with the ability to employ executive processes but only when self-ratings of negative affect were low. An increase in negative affect compromised the ability to employ these strategies in the majority of participants. The data also suggest that high attentional control in conjunction with attenuated estimates of RSA suppression may increase the ability to use executive processes as negative affect increases.


2018 ◽  
Vol 30 (9) ◽  
pp. 1229-1240 ◽  
Author(s):  
Kirsten C. S. Adam ◽  
Matthew K. Robison ◽  
Edward K. Vogel

Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.


2019 ◽  
Vol 32 (4) ◽  
pp. 1390-1401 ◽  
Author(s):  
Raha Hassan ◽  
Harriet L. MacMillan ◽  
Masako Tanaka ◽  
Louis A. Schmidt

AbstractAlthough child maltreatment is a major public health concern, which adversely affects psychological and physical development, we know relatively little concerning psychophysiological and personality factors that may modify risk in children exposed to maltreatment. Using a three-wave, short-term prospective design, we examined the influence of individual differences in two disparate psychophysiological measures of risk (i.e., resting frontal brain electrical activity and respiratory sinus arrhythmia) on the trajectories of extraversion and neuroticism in a sample of female adolescents (N = 55; M age = 14.02 years) exposed to child maltreatment. Adolescents exposed to child maltreatment with relatively higher left frontal absolute alpha power (i.e., lower brain activity) at rest exhibited increasing trajectories of extraversion, and adolescents exposed to child maltreatment with relatively lower respiratory sinus arrhythmia at rest displayed increasing trajectories of neuroticism over 1 year. Individual differences in psychophysiological measures indexing resting central and peripheral nervous system activity may therefore differentially influence personality characteristics in adolescent females exposed to child maltreatment.


2017 ◽  
Vol 29 (9) ◽  
pp. 1498-1508 ◽  
Author(s):  
Benjamin Katz ◽  
Jacky Au ◽  
Martin Buschkuehl ◽  
Tessa Abagis ◽  
Chelsea Zabel ◽  
...  

A great deal of interest surrounds the use of transcranial direct current stimulation (tDCS) to augment cognitive training. However, effects are inconsistent across studies, and meta-analytic evidence is mixed, especially for healthy, young adults. One major source of this inconsistency is individual differences among the participants, but these differences are rarely examined in the context of combined training/stimulation studies. In addition, it is unclear how long the effects of stimulation last, even in successful interventions. Some studies make use of follow-up assessments, but very few have measured performance more than a few months after an intervention. Here, we utilized data from a previous study of tDCS and cognitive training [Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419–1432, 2016] in which participants trained on a working memory task over 7 days while receiving active or sham tDCS. A new, longer-term follow-up to assess later performance was conducted, and additional participants were added so that the sham condition was better powered. We assessed baseline cognitive ability, gender, training site, and motivation level and found significant interactions between both baseline ability and motivation with condition (active or sham) in models predicting training gain. In addition, the improvements in the active condition versus sham condition appear to be stable even as long as a year after the original intervention.


Twin Research ◽  
2001 ◽  
Vol 4 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Margie Wright ◽  
Eco De Geus ◽  
Juko Ando ◽  
Michelle Luciano ◽  
Danielle Posthuma ◽  
...  

AbstractAmultidisciplinary collaborative study examining cognition in a large sample of twins is outlined. A common experimental protocol and design is used in The Netherlands, Australia and Japan to measure cognitive ability using traditional IQ measures (i.e., psychometric IQ), processing speed (e.g., reaction time [RT] and inspection time [IT]), and working memory (e.g., spatial span, delayed response [DR] performance). The main aim is to investigate the genetic covariation among these cognitive phenotypes in order to use the correlated biological markers in future linkage and association analyses to detect quantitativetrait loci (QTLs). We outline the study and methodology, and report results from our preliminary analyses that examines the heritability of processing speed and working memory indices, and their phenotypic correlation with IQ. Heritability of Full Scale IQ was 87% in the Netherlands, 83% in Australia, and 71% in Japan. Heritability estimates for processing speed and working memory indices ranged from 33–64%. Associations of IQ with RT and IT (−0.28 to −0.36) replicated previous findings with those of higher cognitive ability showing faster speed of processing. Similarly, significant correlations were indicated between IQ and the spatial span working memory task (storage [0.31], executive processing [0.37]) and the DR working memory task (0.25), with those of higher cognitive ability showing better memory performance. These analyses establish the heritability of the processing speed and working memory measures to be used in our collaborative twin study of cognition, and support the findings that individual differences in processing speed and working memory may underlie individual differences in psychometric IQ.


2019 ◽  
Vol 122 ◽  
pp. 1-10
Author(s):  
Ryan E.B. Mruczek ◽  
Kyle W. Killebrew ◽  
Marian E. Berryhill

2010 ◽  
Vol 3 (5) ◽  
Author(s):  
Claudia M. Roebers ◽  
Corinne Schmid ◽  
Thomas Roderer

In the present study, the role of visual attentional processes for working memory performance in a sample of 6-year-olds was investigated. This was done by combining an individual differences approach with an experimental manipulation: For the individual differences approach, participants were grouped based on their performance in a classical interference control task, and their working memory skills were systematically compared. For the experimental manipulation, the need to control interference while performing a working memory task was increased in one condition through presentation of distracting stimuli. In a between-subject design performance in this condition was contrasted with a control condition without distractors. Additionally, fixation time during stimuli presentation were quantified by tracking participants` gazes. Results revealed that children with higher interference control skills showed superior working memory performance. Increasing the need to inhibit attention towards task-irrelevant information through presentation of distractors decreased working memory performance. The present study offers supporting evidence for a close relationship between young children`s working memory and attention.


2020 ◽  
Author(s):  
Gavin M. Bidelman ◽  
Jane A. Brown ◽  
Pouya Bashivan

AbstractWorking memory (WM) is a fundamental construct of human cognition. The neural basis of auditory WM is thought to reflect a distributed brain network consisting of canonical memory and central executive brain regions including frontal lobe, prefrontal areas, and hippocampus. Yet, the role of auditory (sensory) cortex in supporting active memory representations remains controversial. Here, we recorded neuroelectric activity via EEG as listeners actively performed an auditory version of the Sternberg memory task. Memory load was taxed by parametrically manipulating the number of auditory tokens (letter sounds) held in memory. Source analysis of scalp potentials showed that sustained neural activity maintained in auditory cortex (AC) prior to memory retrieval closely scaled with behavioral performance. Brain-behavior correlations revealed lateralized modulations in left (but not right) AC predicted individual differences in auditory WM capacity. Our findings confirm a prominent role of auditory cortex, traditionally viewed as a sensory-perceptual processor, in actively maintaining memory traces and dictating individual differences in behavioral WM limits.


Sign in / Sign up

Export Citation Format

Share Document