Process planning and NC-code generation in manufacturing of press dies for production of car bodies

2004 ◽  
Vol 42 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Dongmok Sheen ◽  
Chang Ho Lee ◽  
Sang Do Noh ◽  
Kiwoo Lee
Author(s):  
V. V. Satish K. Motipalli ◽  
Prakash Krishnaswami

This paper describes a novel method for automated process planning for rough boring of turned components with arbitrary internal geometry from a semi-finished stock. Earlier work has been reported on process planning for boring of components with monotonic internal geometry made from bar stock. This paper addresses the more general problem of process planning of parts with non-monotonic internal feature list from arbitrary given initial geometry, i.e., from a casting or from a semi-finished stock. With the algorithms developed, we are able to achieve full automation of all aspects of the process plan, including operations sequencing, parameter selection, NC code generation, etc. Thus, it becomes possible to go from design to NC code in a fully automated fashion. In the present work we focus on a tightly defined part family, which results in very simple but robust automation algorithms. This is in contrast to much of the reported work on automated process planning, which generally targets broad part families, leading to complex algorithms that fall short of complete design-to-NC automation.


2005 ◽  
Vol 6 (1) ◽  
pp. 49-59 ◽  
Author(s):  
V. V. Satish K Motipalli ◽  
Prakash Krishnaswami

This paper describes a novel method for automated process planning for boring of turned components with arbitrary internal geometry from a semi-finished stock. Earlier work has been reported on process planning for boring of components with monotonic internal geometry made from bar stock. This paper addresses the more general problem of process planning of parts with nonmonotonic internal geometry from arbitrary given the initial geometry, i.e., from a casting or from a semi-finished stock. With the algorithms developed, we are able to achieve full automation of all aspects of the process plan, including operations sequencing, parameter selection, numerical control (NC) code generation, etc. Thus, it becomes possible to go from design to NC code in a fully automated fashion. In the present work we focus on a tightly defined part family, which results in very simple but robust automation algorithms. This is in contrast to much of the reported work on automated process planning, which generally targets broad part families, leading to complex algorithms that fall short of complete design-to-NC automation.


Author(s):  
V. V. Satish K. Motipalli ◽  
Prakash Krishnaswami

With the ever-increasing importance of e-commerce/e-business in the manufacturing, traditional standalone CAD/CAPP applications are evolving into web-based applications deployed via the Internet. This paper presents a unique web-based application for automated process planning and NC code generation for mill-turn parts. The application is targeted at a wide range of users. It requires no special software or CAD package at the user’s end, and can be used even by people with virutally no manufacturing knowledge. At the same time, it is also a valuable service for manufacturing experts. This application uses client/server architecture and is developed using Java technologies. This web-based application can be accessed via Internet using any standard web browser with JRE (Java run-time environment), and Java Web Start is used to deploy this application. For wide usability, the application supports easy part specification and automated process planning. Once the part is designed, the user may request NC code generation. The process planning kernel on the server automatically executes all process planning tasks like machinable volume identification, operations sequencing, parameter selection, etc. and generates an intermediate Cutter Location (CL) code. The Cutter Location code is quite generic and can be adapted for any machine using the respective post processors. The interface is also capable of displaying the tool path for verification. The NC code is generated based on the post processor selected by the user and can be downloaded to the client machine if the user is satisfied. It is hoped that this application will develop into a pay-per-use instant NC code generation web service for novices and experts; such a service is currently not offered anywhere on the Internet.


Modern manufacturing industries have increasingly demanded to bring comprehensive input data described using high-level languages such as STEP-NC, rather than outdated G&M codes into computer numerical control machine tool levels. In current dynamic shop floor environments, predefined numerical control (NC) command generated in early stages is regularly found unusable or unsuitable for the dedicated resources, causing useless efforts used up in the initial process planning and NC code generation. This research aims to propose a new structure of an adaptive CNC controller by taking the advantages of well-known IEC61499 and STEP-NC standards. For realising adaptive CNC controller capability, integration of the native process planning decision-making function into CNC controller will be established. The activities such as cutting tool selection, machining parameter determination and toolpath generation will be issued automatically by the controller itself that subject to available online machine resources. The generic STEP-NC file is employed as data input and arranged accordingly in the IEC 61499 function block software editor. The system is developed in the JAVA environment by using proposed language.


Author(s):  
V. V. Satish K. Motipalli ◽  
Prakash Krishnaswami

This paper describes a novel method for automated process planning from bar stock for rough boring of turned components with monotonic internal geometry. By focussing on a well-defined but substantial part family, we are able to achieve complete automation of all aspects of the process plan, including operations sequencing, parameter selection, NC code generation, etc. Thus, it becomes possible to go from design to NC code in a fully automated fashion. The focus on a tightly defined part family also results in very simple but robust automation algorithms. This is in contrast to much of the reported work on automated process planning, which generally target diverse part families, leading to complex algorithms that fall short of complete design-to-NC automation.


2018 ◽  
Author(s):  
Guoqiang Fu ◽  
Hongli Gao ◽  
Tengda Gu

The postprocessor is essential for machining with five-axis machine tools. This paper develops one universal postprocessor for table-tilting type of five-axis machine tools without rotational tool center point (RTCP) function. Firstly, positions of two rotary axes and the workpiece in the machine coordinate system (MCS) are introduced into the kinematic chain of the five-axis machine tools. The uniform product of exponential (POE) formula of the tool relative to the workpiece is established to obtain the universal forward kinematics. On this basis, the postprocessor of table-tilting type of five-axis machine tools is developed. The calculation of rotation angles of rotation axes is proposed in details, including the calculation of double solutions, the determination of rotation angles of C-axis and the selection principle of the shortest path of rotation angles. Movements of linear axes are calculated with rotation angles of rotary axes. The generated movements of all axes are actual positions of all axes relative to their zero positions, which can be used for machining directly. The postprocessor does not rely on RTCP function with positions of rotary axes and the workpiece in MCS. Finally, cutting test in VERICUT and real cutting experiments on SmartCNC500_DRTD five-axis machine tool are carried out to verify the effectiveness of the proposed postprocessor.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 61
Author(s):  
Trung Kien Nguyen ◽  
Lan Xuan Phung ◽  
Ngoc-Tam Bui

In the modern manufacturing industry, the role of computer-aided process planning (CAPP) is becoming increasingly crucial. Through the application of new technologies, experience, and intelligence, CAPP is contributing to the automation of manufacturing processes. In this article, the integration of a proposed CAPP system that is named as BKCAPP and G-code generation module provides a completed CAD–CAPP–CNC system that does not involve any manual processing in the CAM modules. The BKCAPP system is capable of automatically performing machining feature and operation recognition processes from design features in three-dimensional (3D) solid models, incorporating technical requirements such as the surface roughness, geometric dimensions, and tolerance in order to provide process planning for machining processes, including information on the machine tools, cutting tools, machining conditions, and operation sequences. G-code programs based on macro programming are automatically generated by the G-code generation module on the basis of the basic information for the machining features, such as the contour shape, basic dimensions, and cutting information obtained from BKCAPP. The G-code generation module can be applied to standard machining features, such as faces, pockets, bosses, slots, holes, and contours. This novel integration approach produces a practical CAPP method enabling end users to generate operation consequences and G-code files and to customize specific cutting tools and machine tool data. In this paper, a machining part consisting of basic machining features was used in order to describe the method and verify its implementation.


2010 ◽  
Vol 97-101 ◽  
pp. 3146-3150 ◽  
Author(s):  
Lu Feng Luo ◽  
Shuang Sun ◽  
Qing Guo Meng ◽  
Quo Qing Li

In view of the limitation of trial cutting or manual inspection of the process planning validation of conventional numerical control, a new method of planning process simulation based on virtual reality was proposed. Firstly, the structure and implementation scheme of simulation system were given, and the simulation platform was established. Then, the movement behavior of machine tool was analyzed in details, an event handle model based on message response mechanism was proposed. Take tool change for example, the behavior module and the motion mode of related components were described. Researched and inferred the solving process of the curved surface of tool sweeping. The NC code compiler and cutting process simulation were expounded. Finally, the system was realized by means of using Visual C++6.0, OpenGL, Virtools and so on, It could verify the rationality of process planning and achieve the accurate assess.


2013 ◽  
Vol 365-366 ◽  
pp. 950-954
Author(s):  
Xiu Ting Wei ◽  
Jian Ping Zhu ◽  
Gang Li

A chamfering algorithm was put forward to achieve automatic NC programming for chamfering addendum of spiral bevel gears and a NC programming module was developed based on UG/Open through secondary development. Furthermore, a practical example was used to demonstrate the automatic NC code generation process for chamfering addendum according to the preset chamfer surface and its permissible error.


Sign in / Sign up

Export Citation Format

Share Document