Isothermal Crystallization and Melting Behavior of Composites Composed of Poly(L-lactic Acid) and Poly(glycolic Acid) Fibers

2014 ◽  
Vol 53 (11) ◽  
pp. 1715-1725 ◽  
Author(s):  
Hechun Chen ◽  
Chi Ma ◽  
Wei Bai ◽  
Dongliang Chen ◽  
Chengdong Xiong
2012 ◽  
Vol 9 (3) ◽  
pp. 1569-1574 ◽  
Author(s):  
Yan-Hua Cai

Crystallization and melting behavior of Poly(L-lactic acid)(PLLA)/Talc composites with different talc content were investigated in detail. The addition of talc can increase the overall crystallization rate of PLLA, 5%talc makes the melt-crystallization peak temperature of PLLA increase from 96.28 °C to 105.22 °C, and the crystallization enthalpy increases from 1.379 J•g-1to 28.99 J•g-1. The melting behavior of PLLA/5%talc composites at a different heating rate during non-isothermal crystallization at different cooling rate shows that heating rate can affect the melting behavior of PLLA, with increasing of heating rate, the double melting peak degenerates to single melting peak. Melting behavior after isothermal crystallization and after cold isothermal crystallization and hot isothermal crystallization indicates that the double-melting peak of PLLA/5%talc composites results from melting-recrystallization.


2005 ◽  
Vol 38 (10) ◽  
pp. 4246-4253 ◽  
Author(s):  
A. Zapata-Espinosa ◽  
F. J. Medellín-Rodríguez ◽  
N. Stribeck ◽  
A. Almendarez-Camarillo ◽  
S. Vega-Díaz ◽  
...  

2019 ◽  
Vol 25 (4) ◽  
pp. 446-454
Author(s):  
Yan-Hua CAI ◽  
Li-Sha ZHAO

Enhancing crystallization ability is a fundamental challenges in Poly(L-lactic acid) (PLLA) industry, therefore, the goal of this work was to synthesis a new organic nucleating agent N, N'-adipic bis(4-phenylbutyric acid) dihydrazide (APAD), and investigate its effect on non-isothermal crystallization, isothermal crystallization, melting behavior, thermal stability, and optical property of PLLA. Non-isothermal melt crystallization results showed that APAD acted as more effective nucleating and accelerating agent for the crystallization of PLLA, as a result, upon cooling at 1 °C/min, PLLA/0.5 %APAD had the highest onset crystallization temperature 136.4 °C and the crystallization peak temperature 132.0 °C, as well as the largest non-isothermal crystallization enthalpy 48.1 J/g. However, with increasing of APAD concentration from 0.5 wt.% to 3 wt.%, the crystallization peak shifted to the lower temperature. In contrast, for the non-isothermal cold crystallization process, the effect of APAD concentration on the crystallization behavior of PLLA was negligible. Additionally, the non-isothermal crystallization process was also depended on the cooling rates and the final melting temperature. In isothermal crystallization section, to compare with the primary PLLA, the crystallization half-time of PLLA/APAD could decrease from 254.3 s to the minimum value 29.4 s, with 0.5 wt.% APAD contents at 125 °C. Melting behavior of PLLA/APAD samples under different conditions further confirmed the heterogeneous nucleation effect of APAD for PLLA, and the appearance of the double melting peaks was attributed to the melting-recrystallization. Finally, the addition of APAD decreased the thermal stability to some extent, although APAD could not change the thermal decomposition profile of PLLA. And a drop of PLLA/APAD samples in light transmittance resulted from the double influence of the enhancement of crystallization and the opaqueness of APAD.


Sign in / Sign up

Export Citation Format

Share Document