Effect of High-Density Polyethylene Nanocomposite Compatibilizer Type on the Interfacial Adhesion and Mechanical Properties of Polyethylene Nano-Homocomposites

2014 ◽  
Vol 54 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Hossein Izadi Vasafi ◽  
Amir Babaei ◽  
Mehdi Haji Abdolrasouli
2020 ◽  
Vol 39 (23-24) ◽  
pp. 880-889
Author(s):  
Can Hu ◽  
Yueyun Zhou ◽  
Ting Zhang ◽  
Taijun Jiang ◽  
Guangsheng Zeng

Demand for natural fibers reinforced composites is growing as an alternative to synthetic fiber reinforced plastic composites. However, poor compatibility between natural fiber and matrix has limited its development. Therefore, it is necessary to improve their interfacial adhesion to improve the comprehensive properties of composites. In this work, sisal fibers were subjected to an alkali/polyvinyl alcohol coating treatment by an ultrasonic impregnation method, and the sisal/high-density polyethylene composite was prepared by a twin-screw extruder. The Fourier transform infrared spectroscopy was used to characterize the modification effect of sisal fiber. The surface morphology of sisal fiber and the interfacial morphology of sisal/high-density polyethylene composites were observed. The mechanical properties and water absorption of sisal/ high-density polyethylene composites were also studied. The results show that alkali/polyvinyl alcohol coating compound treatment can effectively improve the interfacial adhesion between sisal fiber and high-density polyethylene, improve the mechanical properties of composite, and reduce water absorption. Alkali/polyvinyl alcohol coating compound treatment is a very environment-friendly, cost-effective fiber modification method when compared with traditional modification methods. It is helpful for the development and application of natural fibers reinforced composites.


2014 ◽  
Vol 970 ◽  
pp. 79-83
Author(s):  
Rapisa Jarapanyacheep ◽  
Kasama Jarukumjorn

Sawdust/recycled high density polyethylene (rHDPE) composites were prepared and their mechanical properties, flammability and morphology were investigated. Sawdust was used at contents of 30, 40 and 50 wt%. With increasing sawdust content, tensile strength and elongation at break of the composites decreased whereas tensile modulus increased. Flexural properties showed the same trend as tensile properties. Flammability of the composites enhanced with increasing sawdust content. Mechanical properties of alkali treated sawdust/rHDPE composites were higher than those of untreated sawdust/rHDPE composites at all sawdust contents. Moreover, alkali treatment improved flame retardancy of the composites. SEM micrographs showed that alkali treatment enhanced the interfacial adhesion between sawdust and rHDPE matrix.


2015 ◽  
Vol 19 ◽  
pp. 155-162 ◽  
Author(s):  
Amin Abedini ◽  
Payam Rahimlou ◽  
Taghi Asiabi ◽  
Samrand Rash Ahmadi ◽  
Taher Azdast

Sign in / Sign up

Export Citation Format

Share Document