Multi-scale patterns in the host specificity of plant-dwelling arthropods: the influence of host plant and temporal variation on species richness and assemblage composition of true bugs (Hemiptera)

2011 ◽  
Vol 45 (41-42) ◽  
pp. 2577-2604 ◽  
Author(s):  
Melinda L. Moir ◽  
Karl E.C. Brennan ◽  
Murray J. Fletcher ◽  
Jonathan D. Majer ◽  
John M. Koch
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corey S. Riding ◽  
Timothy J. O’Connell ◽  
Scott R. Loss

AbstractExpansion of urbanization and infrastructure associated with human activities has numerous impacts on wildlife including causing wildlife-structure collisions. Collisions with building windows represent a top bird mortality source, but a lack of research into timing of these collisions hampers efforts to predict them and mitigate effects on avian populations. In Stillwater, Oklahoma, USA, we investigated patterns of bird-window collisions at multiple temporal scales, from within-day to monthly and seasonal variation. We found that collisions peaked during overnight and early morning hours, a pattern that was consistent across seasons. Further, temporal variation in fatal collisions was explained by an interaction between season and avian residency status. This interaction illustrated the expected pattern that more migrant individuals than residents collided in fall, but we also documented unexpected patterns. For example, the highest monthly total of collisions occurred in spring migration during May. We also found similarly high numbers of resident and migrant collisions in spring, and a roughly similar amount of migrant mortality in spring and fall migration. These findings, which provide unprecedented quantitative information regarding temporal variation in bird-window collisions, have important implications for understanding mechanisms by which birds collide and improving timing of measures to reduce this major bird mortality source.


Author(s):  
Alessandra R. Kortz ◽  
Anne E. Magurran

AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.


2013 ◽  
Vol 11 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Lucelia Nobre Carvalho ◽  
Luana Fidelis ◽  
Rafael Arruda ◽  
Andre Galuch ◽  
Jansen Zuanon

Floating litter banks are an ephemeral habitat consisting of branches, twigs, flowers, seeds, and fruits that are trapped on the stream water surface by a variety of retention mechanisms. These heterogeneous materials form a deep layer of dead plant matter that is colonized by a variety of organisms, including fish that forage on the aquatic macroinvertebrates found in this unique habitat. In this study, we aimed to characterize which fish species occupy the floating litter banks and their trophic characteristics, as well as determine if fish assemblage composition and species richness can be predicted by the size of the floating litter banks. Fish sampling was conducted in five rivers located in the Amazon basin. Of the 31 floating litter banks sampled that contained fish, 455 individuals were recorded and were distributed within 40 species, 15 families and five orders. Siluriformes were the most representative order among the samples and contained the largest number of families and species. The fish fauna sampled was mainly composed of carnivorous species that are typically found in submerged litter banks of Amazonian streams. The fish assemblage composition in the kinon can be predicted by the volume of the floating litter banks using both presence/absence and abundance data, but not its species richness. In conclusion, kinon banks harbor a rich fish assemblage that utilizes this habitat for shelter and feeding, and may function as a refuge for the fishes during the peak of the flooding season.


2014 ◽  
Vol 26 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Suelen Cristina Alves da Silva ◽  
Armando Carlos Cervi ◽  
Cleusa Bona ◽  
André Andrian Padial

AIM: Investigate spatial and temporal variation in the aquatic macrophyte community in four urban reservoirs located in Curitiba metropolitan region, Brazil. We tested the hypothesis that aquatic macrophyte community differ among reservoirs with different degrees of eutrophication. METHODS: The reservoirs selected ranged from oligotrophic/mesotrophic to eutrophic. Sampling occurred in October 2011, January 2012 and June 2012. Twelve aquatic macrophytes stands were sampled at each reservoir. Species were identified and the relative abundance of aquatic macrophytes was estimated. Differences among reservoirs and over sampling periods were analyzed: i) through two‑way ANOVAs considering the stand extent (m) and the stand biodiversity - species richness, evenness, Shannon-Wiener index and beta diversity (species variation along the aquatic macrophyte stand); and ii) through PERMANOVA considering species composition. Indicator species that were characteristic for each reservoir were also identified. RESULTS: The aquatic macrophyte stand extent varied among reservoirs and over sampling periods. Species richness showed only temporal variation. On the other hand, evenness and Shannon-Wiener index varied only among reservoirs. The beta diversity of macrophyte stands did not vary among reservoirs or over time, meaning that species variability among aquatic macrophyte stands was independent of the stand extent and reservoir eutrophication. Community composition depended on the reservoir and sampling period. CONCLUSIONS: Our results support our initial expectation that reservoirs of different degrees of eutrophication have different aquatic macrophyte communities. As a consequence, each reservoir had particular indicator species. Therefore, monitoring and management efforts must be offered for each reservoir individually.


<i>Abstract.</i>—Linking landscape features, both natural and human-altered, to aquatic ecosystem structure and function is a fundamental objective in landscape ecology and freshwater science, but this process is data- and resource-intensive. Quantifying how landscape stressors influence aquatic communities requires balancing logistic and financial constraints with effectively sampling the landscape to capture gradients of interest. There are a variety of ways to balance these constraints, such as using existing data, handpicked site selection, or a statistical site-selection scheme. Poor sampling design reduces statistical power; however, we do not know how differences in site-selection designs influence our ability to measure ecological responses to landscape gradients. We quantified how the distribution of sample sites across landscape gradients affected the measured responses of stream fish assemblages to these gradients at different sample sizes. Specifically, we used randomization tests to compare the variability in the responses of fish assemblage structure (species richness and composition) to catchment area and land use (agricultural land) with manipulated distributions (random, highly skewed, and uniform) of sites across these landscape gradients. Assemblage composition was more sensitive than species richness to sampling design, and we observed less variability in the detected response of assemblage composition when samples were distributed uniformly across landscape gradients, especially when sample sizes were small. Although strong responses to environmental gradients, such as species richness to catchment area, are robust to sampling distributions, large sample size and a uniform distribution of samples might help elucidate more subtle responses to environmental gradients.


2020 ◽  
Vol 13 (5) ◽  
pp. 617-628
Author(s):  
Rym Dammak ◽  
Iness Chabbi ◽  
Moez Bahloul ◽  
Chafai Azri

Sign in / Sign up

Export Citation Format

Share Document