Neutronics studies on the feasibility of developing fast breeder reactor with flexible breeding ratio

2015 ◽  
Vol 53 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Yunlong Xiao ◽  
Hongchun Wu ◽  
Youqi Zheng ◽  
Kunpeng Wang
Author(s):  
Noboru Kobayashi ◽  
Takashi Ogawa ◽  
Shigeo Ohki ◽  
Tomoyasu Mizuno ◽  
Takanari Ogata

The metal fuel core is superior to the mixed oxide fuel core because of its higher breeding ratio and compact core size resulting from neutron economics, hard neutron spectrum, and high content of heavy metal nuclides. Meanwhile, the metal fuel core exhibits the characteristic of a lower allowable maximum cladding temperature. Utilizing the advantage of the metal fuel core, conceptual sodium-cooled fast breeder reactor designs have been pursued for the attractive core properties of high breeding ratio, small inventory, compact size, low sodium void reactivity, and high transmutation ratio of the minor actinides. Among attractive cores, a conceptual design for a high breeding ratio was performed without blanket fuels. The design conditions were set so a sodium void reactivity of less than 8 $, a core height of less than 150 cm, a maximum cladding temperature of 650 °C, and a fuel pin bundle pressure drop of 0.4MPa. The breeding ratio of the resultant core was 1.34 without blanket fuels.


Author(s):  
Koji Fujimura ◽  
Satoshi Itooka ◽  
Takeshi Nitawaki

A sodium-cooled MOX-fueled FBR core concept to improve nuclear proliferation resistance was proposed. First, we set an index for the nuclear proliferation resistance. In a previous study, reactor-grade Pu was defined such that the Pu-240 isotopic ratio was larger than 18%. Another study defined nuclear proliferation resistance with the Pu-238 isotopic ratio considering its higher spontaneous fission rate and decay heat. We tentatively use the total isotope composition ratio of Pu-238 and Pu-240 as a proliferation resistance index in line with the earlier studies. Next, we designed the sodium-cooled mixed-oxide (MOX)-fueled core concept with the breeding ratio (BR) of over 1.1 without a radial blanket. To attain the index for nuclear proliferation resistance, we added minor actinides (MAs) to the axial blanket fuel (AB). Contents of MAs in the AB to achieve the proliferation resistance index were evaluated. For the case of Np as a representative MA, the minimum content of Np to achieve the index was 3%. And, for the case of loading all MAs, the minimum content of MAs was 10.5%.


2019 ◽  
Vol 8 (3) ◽  
pp. 260-265
Author(s):  
Ainul Mardiyah ◽  
Dian Fitriyani

Analisis konfigurasi bahan bakar terhadap produktivitas fisil pada Fast Breeder Reaktor (FBR) telah dilakukan. Konfigurasi bahan bakar dirancang dalam 5 variasi dengan 2 kategori yaitu konfigurasi homogen (inner dan outer) serta heterogen dengan fraksi bahan bakar yang sama yaitu 45 %. Perhitungan dilakukan dengan metode komputasi menggunakan kode FI-ITB.CHI yang dikembangkan dalam bahasa pemrograman Borland Delphi 7.0 Bahan bakar yang digunakan adalah campuran uranium-plutonium nitrida (Un-PuN) dan pendingin timbal bismuth (Pb-Bi) pada teras reaktor 2-D (dua dimensi) geometri r-z (silinder). Hasil perhitungan difusi neutronik menunjukkan bahwa pada semua konfigurasi bahan bakar yang diamati diperoleh nilai kritikalitas teras melalui pengaturan fraksi pengayaan (enrichment) pada setiap bagian teras. Fraksi pengayaan rata-rata yang terkecil untuk mencapai keadaan kritis ditunjukkan pada konfigurasi homogen-outer. Hasil analisis menunjukkan bahwa nilai distribusi fluks neutron yang paling tinggi diperoleh pada konfigurasi heterogen dan nilai distribusi daya dengan nilai power peaking factor (ppf) terendah diperoleh pada konfigurasi homogen. Nilai densitas atom bahan fisil yaitu 239Pu paling besar peningkatannya terjadi pada konfigurasi homogen-inner 2 sebagai hasil reaksi fisi bahan bakar setelah 1 siklus (4 tahun) operasi. Nilai BreedingRatio (BR) untuk seluruh konfigurasi bahan bakar masih dalam rentang nilai yang diharapkan (BR>1) namun nilai BR paling baik ditunjukkan pada konfigurasi homogen-inner 2 yaitu dengan nilai 1,17.Kata kunci: FBR, konfigurasi bahan bakar, fisil, breeding ratio.


1959 ◽  
Author(s):  
L.A. Beach ◽  
A.G. Pieper ◽  
M.P. Young

2021 ◽  
Vol 11 (11) ◽  
pp. 5234
Author(s):  
Jin Hun Park ◽  
Pavel Pereslavtsev ◽  
Alexandre Konobeev ◽  
Christian Wegmann

For the stable and self-sufficient functioning of the DEMO fusion reactor, one of the most important parameters that must be demonstrated is the Tritium Breeding Ratio (TBR). The reliable assessment of the TBR with safety margins is a matter of fusion reactor viability. The uncertainty of the TBR in the neutronic simulations includes many different aspects such as the uncertainty due to the simplification of the geometry models used, the uncertainty of the reactor layout and the uncertainty introduced due to neutronic calculations. The last one can be reduced by applying high fidelity Monte Carlo simulations for TBR estimations. Nevertheless, these calculations have inherent statistical errors controlled by the number of neutron histories, straightforward for a quantity such as that of TBR underlying errors due to nuclear data uncertainties. In fact, every evaluated nuclear data file involved in the MCNP calculations can be replaced with the set of the random data files representing the particular deviation of the nuclear model parameters, each of them being correct and valid for applications. To account for the uncertainty of the nuclear model parameters introduced in the evaluated data file, a total Monte Carlo (TMC) method can be used to analyze the uncertainty of TBR owing to the nuclear data used for calculations. To this end, two 3D fully heterogeneous geometry models of the helium cooled pebble bed (HCPB) and water cooled lithium lead (WCLL) European DEMOs were utilized for the calculations of the TBR. The TMC calculations were performed, making use of the TENDL-2017 nuclear data library random files with high enough statistics providing a well-resolved Gaussian distribution of the TBR value. The assessment was done for the estimation of the TBR uncertainty due to the nuclear data for entire material compositions and for separate materials: structural, breeder and neutron multipliers. The overall TBR uncertainty for the nuclear data was estimated to be 3~4% for the HCPB and WCLL DEMOs, respectively.


2013 ◽  
Vol 794 ◽  
pp. 507-513
Author(s):  
R.G. Rangasamy ◽  
Prabhat Kumar

Austenitic stainless steels are the major material of construction for the fast breeder reactors in view of their adequate high temperature mechanical properties, compatibility with liquid sodium coolant, good weldability, availability of design data and above all the fairly vast and satisfactory experience in the use of these steels for high temperature service. All the Nuclear Steam Supply System (NSSS) components of FBR are thin walled structure and require manufacture to very close tolerances under nuclear clean conditions. As a result of high temperature operation and thin wall construction, the acceptance criteria are stringent as compared to ASME Section III. The material of construction is Austenitic stainless steel 316 LN and 304 LN with controlled Chemistry and calls for additional tests and requirements as compared to ASTM standards. Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type, 500 MWe reactor which is at advanced stage of construction at Kalpakkam, Tamilnadu, India. In PFBR, the normal heat transport is mainly through two secondary loops and in their absence; the decay heat removal is through four passive and independent safety grade decay heat removal loops (SGDHR). The secondary sodium circuit and the SGHDR circuit consist of sodium tanks for various applications such as storage, transfer, pressure mitigation and to take care of volumetric expansion. The sodium tanks are thin walled cylindrical vertical vessels with predominantly torispherical dished heads at the top and bottom. These tanks are provided with pull-out nozzles which were successfully made by cold forming. Surface thermocouples and heaters, wire type leak detectors are provided on these tanks. These tanks are insulated with bonded mineral wool and with aluminum cladding. All the butt welds in pressure parts were subjected to 100% Radiographic examination. These tanks were subjected to hydrotest, pneumatic test and helium leak test under vacuum. The principal material of construction being stainless steel for the sodium tanks shall be handled with care following best engineering practices coupled with stringent QA requirements to avoid stress corrosion cracking in the highly brackish environment. Intergranular stress corrosion cracking and hot cracking are additional factors to be addressed for the welding of stainless steel components. Pickling and passivation, Testing with chemistry controlled demineralised water are salient steps in manufacturing. Corrosion protection and preservation during fabrication, erection and post erection is a mandatory stipulation in the QA programme. Enhanced reliability of welded components can be achieved mainly through quality control and quality assurance procedures in addition to design and metallurgy. The diverse and redundant inspections in terms of both operator and technique are required for components where zero failure is desired & claimed. This paper highlights the step by step quality management methodologies adopted during the manufacturing of high temperature thin walled austenitic stainless steel sodium tanks of PFBR.


Sign in / Sign up

Export Citation Format

Share Document