scholarly journals Analisis Konfigurasi Bahan Bakar Terhadap Produktivitas Fisil pada Fast Breeder Reactor (FBR)

2019 ◽  
Vol 8 (3) ◽  
pp. 260-265
Author(s):  
Ainul Mardiyah ◽  
Dian Fitriyani

Analisis konfigurasi bahan bakar terhadap produktivitas fisil pada Fast Breeder Reaktor (FBR) telah dilakukan. Konfigurasi bahan bakar dirancang dalam 5 variasi dengan 2 kategori yaitu konfigurasi homogen (inner dan outer) serta heterogen dengan fraksi bahan bakar yang sama yaitu 45 %. Perhitungan dilakukan dengan metode komputasi menggunakan kode FI-ITB.CHI yang dikembangkan dalam bahasa pemrograman Borland Delphi 7.0 Bahan bakar yang digunakan adalah campuran uranium-plutonium nitrida (Un-PuN) dan pendingin timbal bismuth (Pb-Bi) pada teras reaktor 2-D (dua dimensi) geometri r-z (silinder). Hasil perhitungan difusi neutronik menunjukkan bahwa pada semua konfigurasi bahan bakar yang diamati diperoleh nilai kritikalitas teras melalui pengaturan fraksi pengayaan (enrichment) pada setiap bagian teras. Fraksi pengayaan rata-rata yang terkecil untuk mencapai keadaan kritis ditunjukkan pada konfigurasi homogen-outer. Hasil analisis menunjukkan bahwa nilai distribusi fluks neutron yang paling tinggi diperoleh pada konfigurasi heterogen dan nilai distribusi daya dengan nilai power peaking factor (ppf) terendah diperoleh pada konfigurasi homogen. Nilai densitas atom bahan fisil yaitu 239Pu paling besar peningkatannya terjadi pada konfigurasi homogen-inner 2 sebagai hasil reaksi fisi bahan bakar setelah 1 siklus (4 tahun) operasi. Nilai BreedingRatio (BR) untuk seluruh konfigurasi bahan bakar masih dalam rentang nilai yang diharapkan (BR>1) namun nilai BR paling baik ditunjukkan pada konfigurasi homogen-inner 2 yaitu dengan nilai 1,17.Kata kunci: FBR, konfigurasi bahan bakar, fisil, breeding ratio.

Author(s):  
Noboru Kobayashi ◽  
Takashi Ogawa ◽  
Shigeo Ohki ◽  
Tomoyasu Mizuno ◽  
Takanari Ogata

The metal fuel core is superior to the mixed oxide fuel core because of its higher breeding ratio and compact core size resulting from neutron economics, hard neutron spectrum, and high content of heavy metal nuclides. Meanwhile, the metal fuel core exhibits the characteristic of a lower allowable maximum cladding temperature. Utilizing the advantage of the metal fuel core, conceptual sodium-cooled fast breeder reactor designs have been pursued for the attractive core properties of high breeding ratio, small inventory, compact size, low sodium void reactivity, and high transmutation ratio of the minor actinides. Among attractive cores, a conceptual design for a high breeding ratio was performed without blanket fuels. The design conditions were set so a sodium void reactivity of less than 8 $, a core height of less than 150 cm, a maximum cladding temperature of 650 °C, and a fuel pin bundle pressure drop of 0.4MPa. The breeding ratio of the resultant core was 1.34 without blanket fuels.


2010 ◽  
Vol 401 (1-3) ◽  
pp. 86-90 ◽  
Author(s):  
Kozo Katsuyama ◽  
Akihiro Ishimi ◽  
Koji Maeda ◽  
Tsuyoshi Nagamine ◽  
Takeo Asaga

Author(s):  
Koji Fujimura ◽  
Satoshi Itooka ◽  
Takeshi Nitawaki

A sodium-cooled MOX-fueled FBR core concept to improve nuclear proliferation resistance was proposed. First, we set an index for the nuclear proliferation resistance. In a previous study, reactor-grade Pu was defined such that the Pu-240 isotopic ratio was larger than 18%. Another study defined nuclear proliferation resistance with the Pu-238 isotopic ratio considering its higher spontaneous fission rate and decay heat. We tentatively use the total isotope composition ratio of Pu-238 and Pu-240 as a proliferation resistance index in line with the earlier studies. Next, we designed the sodium-cooled mixed-oxide (MOX)-fueled core concept with the breeding ratio (BR) of over 1.1 without a radial blanket. To attain the index for nuclear proliferation resistance, we added minor actinides (MAs) to the axial blanket fuel (AB). Contents of MAs in the AB to achieve the proliferation resistance index were evaluated. For the case of Np as a representative MA, the minimum content of Np to achieve the index was 3%. And, for the case of loading all MAs, the minimum content of MAs was 10.5%.


2015 ◽  
Vol 53 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Yunlong Xiao ◽  
Hongchun Wu ◽  
Youqi Zheng ◽  
Kunpeng Wang

2020 ◽  
Vol 86 (12) ◽  
pp. 15-22
Author(s):  
N. A. Bulayev ◽  
E. V. Chukhlantseva ◽  
O. V. Starovoytova ◽  
A. A. Tarasenko

The content of uranium and plutonium is the main characteristic of mixed uranium-plutonium oxide fuel, which is strictly controlled and has a very narrow range of the permissible values. We focused on developing a technique for measuring mass fractions of uranium and plutonium by controlled potential coulometry using a coulometric unit UPK-19 in set with a R-40Kh potentiostat-galvanostat. Under conditions of sealed enclosures, a special design of the support stand which minimized the effect of fluctuations in ambient conditions on the signal stability was developed. Optimal conditions for coulometric determination of plutonium and uranium mass fractions were specified. The sulfuric acid solution with a molar concentration of 0.5 mol/dm3 was used as a medium. Lead ions were introduced into the background electrolyte to decrease the minimum voltage of hydrogen reduction to –190 mV. The addition of aluminum nitride reduced the effect of fluoride ions participating as a catalyst in dissolving MOX fuel samples, and the interfering effect of nitrite ions was eliminated by introducing a sulfamic acid solution into the cell. The total content of uranium and plutonium was determined by evaluation of the amount of electricity consumed at the stage of uranium and plutonium co-oxidation. Plutonium content was measured at the potentials, at which uranium remains in the stable state, which makes it possible to subtract the contribution of plutonium oxidation current from the total oxidation current. The error characteristics of the developed measurement technique were evaluated using the standard sample method and the real MOX fuel pellets. The error limits match the requirements set out in the specifications for MOX fuel. The technique for measuring mass fractions of uranium and plutonium in uranium-plutonium oxide nuclear fuel was certified. The relative measurement error of the mass fraction of plutonium and uranium was ±0.0070 and ±0.0095, respectively. The relative error of the ratio of the plutonium mass fraction to the sum of mass fractions of uranium and plutonium was ±0.0085.


1959 ◽  
Author(s):  
L.A. Beach ◽  
A.G. Pieper ◽  
M.P. Young

Sign in / Sign up

Export Citation Format

Share Document