A dated phylogeny of Argophyllaceae (Asterales) is consistent with spread by long-distance dispersal

Author(s):  
Kévin J. L. Maurin ◽  
Rob D. Smissen
2019 ◽  
Vol 69 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Kristina V Klaus ◽  
Nicholas J Matzke

Abstract The ability of lineages to disperse long distances over evolutionary timescales may be influenced by the gain or loss of traits adapted to enhance local, ecological dispersal. For example, some species in the southern conifer family Podocarpaceae have fleshy cones that encourage bird dispersal, but it is unknown how this trait has influenced the clade’s historical biogeography, or its importance compared with other predictors of dispersal such as the geographic distance between regions. We answer these questions quantitatively by using a dated phylogeny of 197 species of southern conifers (Podocarpaceae and their sister family Araucariaceae) to statistically compare standard, trait-independent biogeography models with new BioGeoBEARS models where an evolving trait can influence dispersal probability, and trait history, biogeographical history, and model parameters are jointly inferred. We validate the method with simulation-inference experiments. Comparing all models, those that include trait-dependent dispersal accrue 87.5% of the corrected Akaike Information Criterion (AICc) model weight. Averaged across all models, lineages with nonfleshy cones had a dispersal probability multiplier of 0.49 compared with lineages with fleshy cones. Distance is included as a predictor of dispersal in all credible models (100% model weight). However, models with changing geography earned only 22.0% of the model weight, and models submerging New Caledonia/New Zealand earned only 0.01%. The importance of traits and distance suggests that long-distance dispersal over macroevolutionary timespans should not be thought of as a highly unpredictable chance event. Instead, long-distance dispersal can be modeled, allowing statistical model comparison to quantify support for different hypotheses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koji Takayama ◽  
Yoichi Tateishi ◽  
Tadashi Kajita

AbstractRhizophora is a key genus for revealing the formation process of the pantropical distribution of mangroves. In this study, in order to fully understand the historical scenario of Rhizophora that achieved pantropical distribution, we conducted phylogeographic analyses based on nucleotide sequences of chloroplast and nuclear DNA as well as microsatellites for samples collected worldwide. Phylogenetic trees suggested the monophyly of each AEP and IWP lineages respectively except for R. samoensis and R. × selala. The divergence time between the two lineages was 10.6 million years ago on a dated phylogeny, and biogeographic stochastic mapping analyses supported these lineages separated following a vicariant event. These data suggested that the closure of the Tethys Seaway and the reduction in mangrove distribution followed by Mid-Miocene cooling were key factors that caused the linage diversification. Phylogeographic analyses also suggested the formation of the distinctive genetic structure at the AEP region across the American continents around Pliocene. Furthermore, long-distance trans-pacific dispersal occurred from the Pacific coast of American continents to the South Pacific and formed F1 hybrid, resulting in gene exchange between the IWP and AEP lineages after 11 million years of isolation. Considering the phylogeny and phylogeography with divergence time, a comprehensive picture of the historical scenario behind the pantropical distribution of Rhizophora is updated.


2015 ◽  
Vol 39 (1) ◽  
pp. 290-293 ◽  
Author(s):  
Elizabeth A. Sinclair ◽  
Renae Hovey ◽  
John Statton ◽  
Matthew W. Fraser ◽  
Marion L. Cambridge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document