Porosity and permeability evolution in the Tuaheni Landslide Complex at Hikurangi margin from IODP Sites U1517 and U1519

Author(s):  
Jade Dutilleul ◽  
Sylvain Bourlange ◽  
Yves Géraud ◽  
Thierry Reuschlé
2022 ◽  
Author(s):  
Ziyan Li ◽  
Derek Elsworth ◽  
Chaoyi Wang

Abstract Fracturing controls rates of mass, chemical and energy cycling within the crust. We use observed locations and magnitudes of microearthquakes (MEQs) to illuminate the evolving architecture of fractures reactivated and created in the otherwise opaque subsurface. We quantitatively link seismic moments of laboratory MEQs to the creation of porosity and permeability at field scale. MEQ magnitudes scale to the slipping patch size of remanent fractures reactivated in shear - with scale-invariant roughnesses defining permeability evolution across nine decades of spatial volumes – from centimeter to decameter scale. This physics-inspired seismicity-permeability linkage enables hybrid machine learning (ML) to constrain in-situ permeability evolution at verifiable field-scales (~10 m). The ML model is trained on early injection and MEQ data to predict the dynamic evolution of permeability from MEQ magnitudes and locations, alone. The resulting permeability maps define and quantify flow paths verified against ground truths of permeability.


2020 ◽  
Author(s):  
Saleh Ahmed ◽  
Luis González ◽  
Johannes Jozef Gerardus Reijmer ◽  
Ammar ElHusseiny

<p>In terms of reservoir properties distribution carbonate rocks are very heterogeneous. Moreover, the types of porosity in carbonate rocks is very diverse. In our study of the Upper Marrat Formation near Khasm-adh-Dhibi (central Saudi Arabia) we have documented the pore system complexity and are deconvolving the impact of various post-depositional processes on porosity and permeability evolution of the formation. The Upper Marrat Formation is exposed in the central part of the Arabian plate in a north-south elongated mountain belt. It forms the lower part of the thick Jurassic petroleum-rich succession. The sediments forming the Upper Marrat Formation were deposited during the Early Jurassic time, the Toarcian. The Upper Marrat Formation shows fossiliferous biomicrite to sparse biomicrite carbonates with an evaporite deposit at the top. It is bounded by clayey units at both the top and the base. In general, because of the muddy matrix of the Upper Marrat, sediments are very tight and show low permeability. During the last 175 My, the Upper Marrat has been subjected to a series of diagenetic and tectonic processes. The initial micro- and intergranular porosity was reduced due to early compaction and cementation, however, during later diagenesis and tectonism, porosity and permeability were enhanced. The dominant diagenetic porosity in the Upper Marrat sediments is vuggy porosity, followed by fabric selective intragranular porosity. Many of the horizons in the Upper Marrat are heavily burrowed and mostly filled with sand-sized grains showing a higher porosity than the matrix. Dolomite is limited to evaporite strata and contain extensive inter-crystalline porosity produced during dolomite formation. Tectonism has enhanced porosity through the development of micro- and macro-fractures.  The different sized and orientated micro-fractures are important while they enhance permeability by connecting different pore types. Then extensive macro-fracture network has a major impact on the reservoir qualities, both porosity and permeability. The heavily fractured formation shows numerous fractures sets with NNE to SSW and ENE to WNW orientations. Fractures are mostly vertical to near-vertical; they are nearly all open, and often crosscut beds, or end at bedding planes. These fractures are the most abundant porosity type and their connectivity results in a very high permeability. In conclusion, initial porosity and permeability, and subsequent diagenetic and tectonic processes reduced and enhanced the porosity and permeability development of the sediments of the Early Jurassic Upper Marrat Formation.</p>


Author(s):  
Steven Claes ◽  
Fadi H. Nader ◽  
Souhail Youssef

Some of the world best hydrocarbon reservoirs (carbonates and siliciclastics) are also believed to be valuable for subsurface storage of CO2 and other fluids. Yet, these reservoirs are heterogeneous in terms of their mineralogy and flow properties, at varying spatial-temporal scales. Therefore, predicting the porosity and permeability (flow properties) evolution of carbonates and sandstones remains a tedious task. Diagenesis refers to the alteration of sedimentary rocks through geologic time, mainly due to rock-fluid interactions. It affects primarily the flow properties (porosity and permeability) of already heterogeneous reservoir rocks. In this project a new approach is proposed to calculate/quantify the influence of diagenetic phases (e.g. dissolution, cement plugging) on flow properties of typical sandstone reservoir rocks (Early Jurassic Luxembourg Formation). A series of laboratory experiments are performed in which diagenetic phases (e.g. pore blocking calcite cement in sandstone) are selectively leached from pre-studied samples, with the quantification of the petrophysical characteristics with and without cement to especially infer permeability evolution. Poorly and heavily calcite-cemented sandstone samples, as well as some intermediate cemented samples were used. The results show a distinctive dissolution pattern for different cementation grades and varying Representative Elementary Volumes (REVs). These conclusions have important consequences for upscaling diagenesis effects on reservoirs, and the interpretation of geochemical modelling results of diagenetic processes. The same approach can be applied on other type of cements and host-rocks, and could be improved by integrating other petrophysical analyses (e.g. petroacoustic, NMR).


2012 ◽  
Vol 57 (4) ◽  
pp. 320-327 ◽  
Author(s):  
BoJing Zhu ◽  
HuiHong Cheng ◽  
YanChao Qiao ◽  
Chang Liu ◽  
YaoLin Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document