The Norwegian spring-spawning herring - spawning, larval drift and larval retention

Sarsia ◽  
2002 ◽  
Vol 87 (2) ◽  
pp. 167-178 ◽  
Author(s):  
R. Sætre ◽  
R. Toresen ◽  
H. Søiland ◽  
P. Fossum
2020 ◽  
Vol 125 (5) ◽  
Author(s):  
David Lindo‐Atichati ◽  
Yanli Jia ◽  
Johanna L. K. Wren ◽  
Andreas Antoniades ◽  
Donald R. Kobayashi

2015 ◽  
Vol 24 (6) ◽  
pp. 553-570 ◽  
Author(s):  
Robert L. Stephenson ◽  
Michael J. Power ◽  
Shawn W. Laffan ◽  
Iain M. Suthers

2001 ◽  
Vol 79 (8) ◽  
pp. 1472-1489 ◽  
Author(s):  
Julie D'Amours ◽  
Stéphanie Thibodeau ◽  
Réjean Fortin

Several fish species that spawn in lotic habitats have a larval-drift phase which is a major determinant of their reproductive success. The main objective of this study was to compare seasonal, diel, longitudinal, transverse, and vertical variations in rates of lake sturgeon (Acipenser fulvescens), Stizostedion spp., Catostomus spp., Moxostoma spp., quillback (Carpiodes cyprinus), and mooneye (Hiodon tergisus) larval drift in Des Prairies River (DPR) near Montreal (Quebec), which is one of the major lotic spawning habitats of the St. Lawrence River system. Larval sampling was conducted in the spring of 1994 and 1995 for the six taxa, and on a more restricted basis for lake sturgeon in 1996–1998, using drift nets set at several transects, stations, depths, and periods of the day, along a 19 km long section of river beginning ca. 2 km downstream from the DPR power house. For all taxa except lake sturgeon, peak larval drift occurred ca. 1 week earlier in 1995 than in 1994. The sequence was very similar between years, beginning with Stizostedion spp., followed by Catostomus spp., then lake sturgeon, quillback, and mooneye drifting simultaneously, and finally Moxostoma spp. Generally, for all taxa except quillback, whose multimodal drift pattern suggests intermittent, prolonged spawning, larval-drift profiles showed one major seasonal mode, which was observed simultaneously at all transects. For all taxa except quillback, drift rates peaked between 21:00 and 03:00 and were minimal during daylight hours. Lake sturgeon and Stizostedion spp. larval drift rates decreased radically from the most upstream to the most downstream transect, suggesting that both taxa spawn mostly in the vicinity of the DPR power house. More studies are required to explain this longitudinal decline in drift rates, particularly for lake sturgeon. The other taxa showed longitudinal variation in larval drift rates, suggesting that they spawn near the DPR power house and (or) in the Île de Pierre Rapids, ca. 12 km downstream. At all transects, larval drift rates for the six taxa were generally higher in the right half (Montreal) of the river, suggesting that eggs are deposited mostly in this part of the river at the two major spawning areas and that larvae tend to remain in the same general corridors during downstream migration. For all taxa, though to a lesser extent for lake sturgeon, nocturnal drift rates tend to be higher near the surface than at mid-depth and near the bottom, the reverse situation being observed for diurnal drift rates.


2017 ◽  
Vol 26 (10) ◽  
pp. 2765-2782 ◽  
Author(s):  
Heiko Stuckas ◽  
Loreen Knöbel ◽  
Hanna Schade ◽  
Corinna Breusing ◽  
Hans-Harald Hinrichsen ◽  
...  

2014 ◽  
Vol 122 ◽  
pp. 105-115 ◽  
Author(s):  
Marion Cuif ◽  
David Michael Kaplan ◽  
Jérôme Lefèvre ◽  
Vincent Martin Faure ◽  
Matthieu Caillaud ◽  
...  

2017 ◽  
Author(s):  
Brady K. Quinn ◽  
Joël Chassé ◽  
Rémy Rochette

We used a bio-physical model to estimate for the first time the effect of larval drift on potential connectivity among American lobster (Homarus americanus) fisheries management areas over the geographic range of the species. The model predicted drift of larvae over distances of 50-805 km (mean = 129 km), which connected many management areas and caused marked spatial heterogeneity in retention and self-seeding versus export and import of larvae by different fisheries areas. Including mortality functions in the model resulted in less drift and settlement, and had complex effects on the amount, but not the incidence, of potential connectivity among fisheries. The model’s predictions received support from comparison of predicted settlement to landings six or seven years later in some (but not all) parts of the model domain. Although improvements are still needed to capture larval behaviours and spatial variability in larval release and mortality across the species’ range, this information is important to lobster fisheries management because the amount and direction of connectivity between fisheries can inform cooperative management strategies to sustain interconnected fisheries.


2001 ◽  
Vol 61 (3) ◽  
pp. 357-362 ◽  
Author(s):  
C. A. R. M. ARAUJO-LIMA ◽  
V. V. da SILVA ◽  
P. PETRY ◽  
E. C. OLIVEIRA ◽  
S. M. L. MOURA

Many streams and large rivers present higher ichthyoplankton densities at night. However, in some rivers this does not occur and larvae are equally abundant during the day. Larval drift diel variation is an important information for planning sampling programs for evaluating larval distribution and production. The aim of this study was to test whether the abundance of larval fish was different at either period. We tested it by comparing day and night densities of characiform, clupeiform and siluriform larvae during five years in the Amazon and one year in Rio Negro. We found that larvae of three species of characiform and larvae of siluriform were equally abundant during day and night in the Amazon. Conversely, the catch of Pellona spp. larvae was significantly higher during the day. In Rio Negro, however, larval abundance was higher during the night. These results imply that day samplings estimate adequately the abundance of these characiform and siluriform larvae in the Amazon, but not Pellona larvae. Evaluations of larved densities of Rio Negro will have to consider night sampling.


1984 ◽  
Vol 41 (7) ◽  
pp. 1055-1065 ◽  
Author(s):  
M. Sinclair ◽  
M. J. Tremblay

Each population of Atlantic herring (Clupea harengus harengus) has its own seasonally fixed spawning period of a few weeks duration, but the mean spawning times of different populations differ substantially. The extant theory explains the population-specific timing of spawning relative to the plankton production blooms in the inferred larval distributional area. Support of this theory is evaluated, and found lacking, in the light of a recent "stock" hypothesis involving larval retention. The new hypothesis involves two constraints. First, the larvae of a discrete herring population develop within, and are thus adapted to, the specific oceanographic conditions of their larval retention area. Second, metamorphosis from the larval to juvenile form occurs primarily within a restricted period of the year (April to October). Given these two constraints, it is hypothesized that the timing of spawning of a herring population is a function of the time necessary to complete the larval phase and yet metamorphose within the acceptable seasonal envelope. Populations that have "good" larval retention areas can spawn in the spring and still metamorphose within the seasonal envelope. Populations with larval retention areas that are less "good" for larval growth have to spawn earlier to satisfy the two constraints. The implications of the hypothesis on the "match–mismatch" theory are briefly discussed.


Polar Biology ◽  
2019 ◽  
Vol 43 (8) ◽  
pp. 1029-1042 ◽  
Author(s):  
Elena Eriksen ◽  
Mats Huserbråten ◽  
Harald Gjøsæter ◽  
Frode Vikebø ◽  
Jon Albretsen

Sign in / Sign up

Export Citation Format

Share Document