Optimizing the Wheel Profile to Improve Rail Vehicle Dynamic Performance

1979 ◽  
Vol 8 (2-3) ◽  
pp. 116-122 ◽  
Author(s):  
RAINER HELLER ◽  
E. HARRY LAW
2013 ◽  
Vol 712-715 ◽  
pp. 1541-1544
Author(s):  
Yi Jia Wang ◽  
Jing Zeng

With the rapid development of high-speed railways, wheel and rail wear has become increasingly serious due to the acute wheel-rail interaction. During the operation of high speed vehicle, complicated wheel-rail contact force will lead to wheel profile wear, which will worsen the dynamic performance of vehicle system, or even influence the safe operation of vehicles. In order to ensure the vehicle dynamic performance, right now regularly wheel re-profiling has to be adopted. Therefore, the study of wheel profile wear and its effect on vehicle dynamic performance is very important [1,. The purpose of the paper is to study the variation characteristics of vehicle dynamic performance with respect to the wheel profile wear through numerical simulation and field test.


Author(s):  
Khaled E. Zaazaa ◽  
Brian Whitten

In recent decades, there has been a considerable effort in improving railroad vehicle dynamic performance. This involves high operational speed with stable behavior, better curving performance, better ride quality, and increased life of the wheel and rail profiles. To achieve this goal, the use of independently rotating wheels (IRW) is proposed as one potential option. Using IRW either partially or totally decouples the pitch rotation of the two wheels of the “wheelset”, thereby reducing or eliminating the longitudinal creepage and thus wheelset hunting motion. On the other hand, the longitudinal creepage is no longer available to provide steering assistance in curves, and continuous flange contact during curving is expected. However, by judicious choice of wheel profile and careful truck design, the lateral force between wheel and rail during curving can be reduced, decreasing the wear on both the wheel and rail profiles. Therefore, such solution is assumed to achieve higher stable operational speed and improved curving behavior. In this paper, the effect of using IRW on railroad vehicle performance is examined. The equations of motion of a single wheelset model and a suspended wheelset model that use IRW are presented and compared with those for similar models that use a rigid wheelset. Using a newly developed general multibody code, a complete vehicle model that uses IRW is examined and compared with one that uses rigid wheelsets. The effect of the IRW system on vehicle dynamic performance is quantitatively presented. In addition, the ability of the contact formulations used in this multibody code for modeling the IRW system is confirmed.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


2021 ◽  
Vol 70 ◽  
pp. 1-11
Author(s):  
Fei Liu ◽  
Lin Liang ◽  
Guanghua Xu ◽  
Jianmin Wang ◽  
Chenggang Hou

2013 ◽  
Vol 860-863 ◽  
pp. 1725-1728
Author(s):  
Fan Biao Bao

This document focus on the car's dynamic performance characteristics.Because MATLAB has many advantages such as intuitive, clear physical meaning, a small amount of programming, data visualization and high degree of merit. This paper Computes and analysis with the introduction of an instance practice vehicle models.In light of the specific model parameters, this paper has analyzed car driver and driving resistance balance, power balance and power factor based on the application of Mat Lab's data analysis and graphics, and drawn the relevant graph, according to the mapping feature maps.The paper analysis of the car comprehensive power the car's dynamic graphing features calculation and research method are provided. The paper has provided new ideas of vehicle parameter selection and design.It has some practical value.


2021 ◽  
Vol 42 ◽  
pp. 71-78
Author(s):  
Oana Victoria Oțăt ◽  
Ilie Dumitru ◽  
Laurenţiu Racilă ◽  
Dragoș Tutunea ◽  
Lucian Matei

The current accelerated developments within the automotive sector have triggered a series of performance, comfort, safety and design-related issues. Hence, oftentimes manufacturers are challenged to combine various elements so as to achieve an attractive design, without diminishing the vehicle’s dynamic performance. In order to determine the vehicle dynamic performances we carried out an analysis by two methods. In the first part of the paper, we have used the analytical method to establish the dynamic performances of a vehicle. The second part of our study addresses another method to determine the star performances of the vehicle by means of computerized simulations. The first test aimed to determine vehicle starting performances for two vehicle models, with similar technical configuration, but with the same initial data. In the second test, we aimed at determining the start performance for the same car model, with the same initial data, but for different adhesion coefficients


Sign in / Sign up

Export Citation Format

Share Document