Quinus ab Omni Nævo Vindicatus1

Author(s):  
John P. Burgess

Today there appears to be a widespread impression that W. V. Quine's notorious critique of modal logic, based on certain ideas about reference, has been successfully answered. As one writer put it some years ago: “His objections have been dead for a while, even though they have not yet been completely buried.” What is supposed to have killed off the critique? Some would cite the development of a new ‘possible-worlds’ model theory for modal logics in the 1960s; others, the development of new ‘direct’ theories of reference for names in the 1970s.These developments do suggest that Quine's unfriendliness towards any formal logics but the classical and indifference towards theories of reference for any singular terms but variables were unfortunate.

1984 ◽  
Vol 49 (4) ◽  
pp. 1393-1402
Author(s):  
Harold T. Hodes

Much of the literature on the model theory of modal logics suffers from two weaknesses. Firstly, there is a lack of generality; theorems are proved piecemeal about this or that modal logic, or at best small classes of logics. Much of the literature, e.g. [1], [2], and [3], confines attention to structures with the expanding domain property (i.e., if wRu then Ā(w) ⊆ Ā(u)); the syntactic counterpart of this restriction is assumption of the converse Barcan scheme, a move which offers (in Russell's phrase) “all the advantages of theft over honest toil”. Secondly, I think there has been a failure to hit on the best ways of extending classical model theoretic notions to modal contexts. This weakness makes the literature boring, since a large part of the interest of modal model theory resides in the way in which classical model theoretic notions extend, and in some cases divide, in the modal setting. (The relation between α-recursion theory and classical recursion theory is analogous to that between modal model theory and classical model theory. Much of the work in α-recursion theory involved finding the right definitions (e.g., of recursive-in) and separating concepts which collapse in the classical case (e.g. of finiteness and boundedness).)The notion of a well-behaved modal logic is introduced in §3 to make possible rather general results; of course our attention will not be restricted to structures with the expanding domain property. Rather than prove piecemeal that familiar modal logics are well-behaved, in §4 we shall consider a class of “special” modal logics, which obviously includes many familiar logics and which is included in the class of well-behaved modal logics.


1992 ◽  
Vol 16 (3-4) ◽  
pp. 231-262
Author(s):  
Philippe Balbiani

The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.


10.29007/hgbj ◽  
2018 ◽  
Author(s):  
Nick Bezhanishvili

The method of canonical formulas is a powerful tool for investigating intuitionistic and modal logics. In this talk I will discuss an algebraic approach to this method. I will mostly concentrate on the case of intuitionistic logic. But I will also review the case of modal logic and possible generalizations to substructural logic.


Metaphysica ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mark Maller

Abstract Alvin Plantinga’s controversial free will defense (FWD) for the problem of evil is an important attempt to show with certainty that moral evils are compatible and justifiable with God’s omnipotence and omniscience. I agree with critics who argue that it is untenable and the FWD fails. This paper proposes new criticisms by analyzing Plantinga’s presuppositions and objectionable assumptions in God, Freedom and Evil. Notably, his limited concept of omnipotence, and possible worlds theory lack rigorous argument and are subjectively biased with irrelevant weak examples. My ontological possible worlds theory (Possible Conditional Timelines) shows that it is very likely that the omnipotent God exists of necessity in some worlds but perhaps not this one. Omnipotence is total and absolute, and should imply the freedom of will to actualize all worlds God chooses. Plantinga’s position regarding God’s omniscience of future counterfactuals is implausible based on modal logic conjecture.


Author(s):  
Scott Soames

This chapter is a case study of the process by which the attempt to solve philosophical problems sometimes leads to the birth of new domains of scientific inquiry. It traces how advances in logic and the philosophy of mathematics, starting with Gottlob Frege and Bertrand Russell, provided the foundations for what became a rigorous and scientific study of language, meaning, and information. After sketching the early stages of the story, it explains the importance of modal logic and “possible worlds semantics” in providing the foundation for the last half century of work in linguistic semantics and the philosophy of language. It argues that this foundation is insufficient to support the most urgently needed further advances. It proposes a new conception of truth-evaluable information as inherently representational cognitive acts of certain kinds. The chapter concludes by explaining how this conception of propositions can be used to illuminate the notion of truth; vindicate the connection between truth and meaning; and fulfill a central, but so far unkept, promise of possible worlds semantics.


2021 ◽  
pp. 14-52
Author(s):  
Cian Dorr ◽  
John Hawthorne ◽  
Juhani Yli-Vakkuri

This chapter presents the system of classical higher-order modal logic which will be employed throughout this book. Nothing more than a passing familiarity with classical first-order logic and standard systems of modal logic is presupposed. We offer some general remarks about the kind of commitment involved in endorsing this logic, and motivate some of its more non-standard features. We also discuss how talk about possible worlds can be represented within the system.


Author(s):  
Thomas J. McKay

In reasoning we often use words such as ‘necessarily’, ‘possibly’, ‘can’, ‘could’, ‘must’ and so on. For example, if we know that an argument is valid, then we know that it is necessarily true that if the premises are true, then the conclusion is true. Modal logic starts with such modal words and the inferences involving them. The exploration of these inferences has led to a variety of formal systems, and their interpretation is now most often built on the concept of a possible world. Standard non-modal logic shows us how to understand logical words such as ‘not’, ‘and’ and ‘or’, which are truth-functional. The modal concepts are not truth-functional: knowing that p is true (and what ‘necessarily’ means) does not automatically enable one to determine whether ‘Necessarily p’ is true. (‘It is necessary that all people have been people’ is true, but ‘It is necessary that no English monarch was born in Montana’ is false, even though the simpler constituents – ‘All people have been people’ and ‘No English monarch was born in Montana’– are both true.) The study of modal logic has helped in the understanding of many other contexts for sentences that are not truth-functional, such as ‘ought’ (‘It ought to be the case that p’) and ‘believes’ (‘Alice believes that p’); and also in the consideration of the interaction between quantifiers and non-truth-functional contexts. In fact, much work in modern semantics has benefited from the extension of modal semantics introduced by Richard Montague in beginning the development of a systematic semantics for natural language. The framework of possible worlds developed for modal logic has been fruitful in the analysis of many concepts. For example, by introducing the concept of relative possibility, Kripke showed how to model a variety of modal systems: a proposition is necessarily true at a possible world w if and only if it is true at every world that is possible relative to w. To achieve a better analysis of statements of ability, Mark Brown adapted the framework by modelling actions with sets of possible outcomes. John has the ability to hit the bull’s-eye reliably if there is some action of John’s such that every possible outcome of that action includes John’s hitting the bull’s-eye. Modal logic and its semantics also raise many puzzles. What makes a modal claim true? How do we tell what is possible and what is necessary? Are there any possible things that do not exist (and what could that mean anyway)? Does the use of modal logic involve a commitment to essentialism? How can an individual exist in many different possible worlds?


2019 ◽  
Vol 13 (4) ◽  
pp. 720-747
Author(s):  
SERGEY DROBYSHEVICH ◽  
HEINRICH WANSING

AbstractWe present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing (2010) and Odintsov & Wansing (2017), as well as the modal logic KN4 with strong implication introduced in Goble (2006). In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system and a decidable sequent calculus for which a contraction elimination and a cut elimination result are shown.


Sign in / Sign up

Export Citation Format

Share Document