In-vitro, ex-vivo, and in-vivo release evaluation of in situ forming buprenorphine implants using mixture of PLGA copolymers and additives

2018 ◽  
Vol 68 (16) ◽  
pp. 965-977 ◽  
Author(s):  
Hossein Kamali ◽  
Elham Khodaverdi ◽  
Farzin Hadizadeh ◽  
Seyed Ahmad Mohajeri ◽  
Younes Kamali ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4221
Author(s):  
Ying Chen ◽  
Xiaomin Wang ◽  
Yudong Huang ◽  
Peipei Kuang ◽  
Yushu Wang ◽  
...  

Injectable hydrogels, which are formed in situ by changing the external stimuli, have the unique characteristics of easy handling and minimal invasiveness, thus providing the advantage of bypass surgical operation and improving patient compliance. Using external temperature stimuli to realize the sol-to-gel transition when preparing injectable hydrogel is essential since the temperature is stable in vivo and controllable during ex vivo, although the hydrogels obtained possibly have low mechanical strength and stability. In this work, we designed an in situ fast-forming injectable cellulose/albumin-based hydrogel (HPC-g-AA/BSA hydrogels) that responded to body temperature and which was a well-stabilized hydrogen-bonding network, effectively solving the problem of poor mechanical properties. The application of localized delivery of chemotherapeutic drugs of HPC-g-AA/BSA hydrogels was evaluated. In vitro and in vivo results show that HPC-g-AA/BSA hydrogels exhibited higher antitumor efficacy of reducing tumor size and seem ideal for localized antitumor therapy.


2019 ◽  
Vol 50 ◽  
pp. 188-200 ◽  
Author(s):  
Hossein Kamali ◽  
Elham Khodaverdi ◽  
Farzin Hadizadeh ◽  
Seyed Ahmad Mohajeri ◽  
Ali Nazari ◽  
...  

2010 ◽  
Vol 20 (16) ◽  
pp. 3265 ◽  
Author(s):  
Ju Young Lee ◽  
Yun Mi Kang ◽  
E Sle Kim ◽  
Mi Lan Kang ◽  
Bong Lee ◽  
...  

2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 275 ◽  
Author(s):  
Ibrahim Elsayed ◽  
Rania Moataz El-Dahmy ◽  
Ahmed Hassen Elshafeey ◽  
Nabaweya Abdelaziz Abd El Gawad ◽  
Omaima Naim El Gazayerly

In situ forming nanovesicular systems (IFNs) were prepared and optimized to improve Rosuvastatin calcium (RC) oral bioavailability through increasing its solubility and dissolution rate. The IFN was composed of Tween® 80 (T80), cetyl alcohol (CA), in addition to mannitol or Aerosil 200. A single simple step was adopted for preparation, then the prepared formulations were investigated by analyzing their particle size (PS), polydispersity index (PDI), Zeta potential (ZP), entrapment efficiency (EE), and flowability properties. D-optimal design was applied to choose the optimized formulations. The maximum desirability values were 0.754 and 0.478 for the optimized formulations containing 0.05 g CA, 0.18 g T80, and 0.5 g mannitol (OFM) or Aerosil (OFA), respectively. In vitro drug release from the optimized formulations showed a significantly faster dissolution rate when compared to the market product. In vivo performance of the optimized formulations in rabbits was investigated after filling them into enteric-coated capsules. Ultimately, OFA formulation achieved a 3 times increase in RC oral bioavailability in comparison with the market product, supporting the hypothesis of considering IFNs as promising nanocarriers able to boost the bioavailability of BCS class II drugs.


Sign in / Sign up

Export Citation Format

Share Document