CARBON MASS TRANSFER INTO COMPOSITE SLABS UNDER THE EFFECT OF NON-FICKIAN DIFFUSION MODEL

2007 ◽  
Vol 195 (1) ◽  
pp. 1-10
Author(s):  
A. F. Khadrawi ◽  
J. Al-Jarrah ◽  
M. A. Al-Nimr
SPE Journal ◽  
2021 ◽  
pp. 1-26
Author(s):  
Ye Tian ◽  
Chi Zhang ◽  
Zhengdong Lei ◽  
Xiaolong Yin ◽  
Hossein Kazemi ◽  
...  

Summary Most simulators currently use the advection/diffusion model (ADM), where the total flux comprises Darcian advection and Fickian diffusion. However, significant errors can arise, especially for modeling diffusion processes in fractured unconventional reservoirs, if diffusion is modeled by the conventional Fick’s law using molar concentration. Hence, we propose an improved multicomponent diffusion model for fractured reservoirs to better quantify the multiphase multicomponent transport across the fracture/matrix interface. We first give a modified formulation of the Maxwell-Stefan (MS) equation to model the multicomponent diffusion driven by the chemical potential gradients. A physics-based modification is proposed for the ADM in fractured reservoirs, where fracture, matrix, and their interface are represented by three different yet interconnected flow domains to honor the flux continuity at the fracture/matrix interface. The added interface using a more representative fluid saturation and composition of the interface can hence better capture the transient mass fluxes between fracture and matrix. The proposed approach is also implemented in an in-house compositional simulator. The multicomponent diffusion model is validated with both intraphase and interphase diffusion experiments. Then, the improved model for fracture/matrix interaction is compared with a fine-grid model. The proposed multiple interacting continua (MINC) model with three continua (MINC3) can better match the fine-grid model’s result than the double-porosity (DP) model, which only obtains a fair match at an early time. Then, we simulate a gas huff ‘n’ puff (HnP) well in the Permian Basin to investigate the effect of diffusion within the fractured tight oil reservoir. The simulation reveals that diffusion has a minor effect on the performance of depletion when oil is the dominant phase. For gas HnP, the simulation neglecting diffusion will underestimate the oil recovery factor (RF) but overestimate the gas rate. The DP approach tends to overestimate the RF of heavy components but leads to a similar cumulative oil RF compared with MINC3. With the diffusion included in the simulation, gas HnP performance becomes more sensitive to the soaking time than the model without diffusion. Although increasing the soaking time will lead to a higher RF after considering diffusion, the incremental oil is not sufficiently large to justify a prolonged soaking time.


1992 ◽  
Vol 9 (2) ◽  
pp. 109-120 ◽  
Author(s):  
Mohammad S. El-Geundi

The adsorption of basic dyestuffs (Basic Blue 69 and Basic Red 22) onto natural clay has been studied using a series of batch adsorption runs. The pore diffusion model (PDM) has been developed based on external mass transfer and pore diffusion to predict the performance of a batch adsorber. A computer program has been developed to generate theoretical Sherwood number-time curves and these results were adjusted to experimental Sherwood number-time curves by means of a ‘best fit’ approach. The variables of initial dye concentration and natural clay mass have been successfully correlated using a single external mass-transfer coefficient, Ks, and a single effective pore diffusion coefficient, Deff. The Ks values are 3.3 × 10−5 and 2.6 × 10−5 m/s for Basic Blue 69 and Basic Red 22, respectively. The Deff values are 7.3 × 10−10 and 9.6 × 10−10 m2/s for Basic Blue 69 and Basic Red 22, respectively.


1983 ◽  
Vol 2 (4) ◽  
pp. 289-299 ◽  
Author(s):  
R.M.V.G.K. Rao ◽  
Manas Chanda ◽  
N. Balasubramanian

2008 ◽  
Vol 26 (9) ◽  
pp. 651-659 ◽  
Author(s):  
Elio E. Gonzo ◽  
Luis F. Gonzo

In this work, the film–pore diffusion model was applied to the adsorption of phenol onto peanut shell activated carbon in a batch stirred vessel. This two-resistance model was applied to predict the phenol concentration decay curves for different initial phenol concentrations, carbon particle sizes and dosages. The predicted concentration decay curves were compared with the experimental findings. The optimum best-fit values of the external mass-transfer coefficient and effective diffusion coefficients were found by minimizing the difference between the experimental and model-predicted phenol solution concentration. It was found that, under the experimental conditions employed in this study, the influence of the external mass-transfer resistance was low. A single value of the mass transport coefficient, kf, of (4.8 ± 1.3) × 10−3 (cm/s) described the whole range of system conditions. The difference between the corresponding values of the effective diffusivity, Deff, was not statistically significant. Consequently, a constant value of the effective pore diffusivity of (4.1 ± 0.4) × 10−6 (cm2/s) was sufficient to provide an accurate correlation of the decay concentration curve.


Author(s):  
Alex Raymond ◽  
Srinivas Garimella

Adsorption heat pumps and chillers can utilize solar or waste heat to provide space conditioning, process heating or cooling, or energy storage. In these devices, accurate modeling of intraparticle adsorbate mass transfer is an important part of predicting overall performance. The linear driving force (LDF) approximation is often used for modeling intraparticle mass transfer in place of the more detailed Fickian diffusion (FD) equation for its computational simplicity. This paper directly compares the adsorbate contents predicted by the conventional LDF approximation, an empirical LDF approximation proposed by El-Sharkawy et al. [1], and the FD equations for cylindrical adsorbent fibers such as activated carbon fiber (ACF). The conditions under which the LDFs agree with the FD equation are then evaluated. It is shown that for a given working pair, agreement between the LDF and FD equations is affected by the diffusivity, particle radius, half-cycle time, initial adsorbate content, and equilibrium adsorbate content. The maximum possible error in adsorbate content predicted by the LDF approximation compared with the FD solution is then calculated for the ACF (A-20)-ethanol working pair. Although the maximum error will be different for other cases, the technique used in this paper can be reproduced to determine the greatest possible LDF error for any working pair.


Sign in / Sign up

Export Citation Format

Share Document