pore diffusion
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 24)

H-INDEX

28
(FIVE YEARS 4)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2566
Author(s):  
Mohammad I. Al-Wabel ◽  
Munir Ahmad ◽  
Hamed A. Al-Swadi ◽  
Jahangir Ahmad ◽  
Yassir Abdin ◽  
...  

Elevated levels of doxycycline (DC) have been detected in the environment due to its extensive utilization as a veterinary antibiotic. Sorption–desorption behavior of DC in soil affects its transport, transformation, and availability in the environment. Thus, sorption–desorption behavior of DC was explored in three soils (S1, S2, and S3) after manure application with and without mesquite wood-waste-derived biochar (BC) pyrolyzed at 600 °C. Sorption batch trials demonstrated the highest DC sorption in soil S1 as compared to S2 and S3, either alone or in combination with manure or manure + BC. Chemical sorption and pore diffusion were involved in DC sorption, as indicated by the kinetic models. Soil S1 with manure + BC exhibited the highest Langmuir model predicted sorption capacity (18.930 mg g−1) compared with the other two soils. DC sorption capacity of soils was increased by 5.0–6.5-fold with the addition of manure, and 10–13-fold with BC application in a soil–manure system. In desorption trials, manure application resulted in 67%, 40%, and 41% increment in DC desorption in soil S1, S2, and S3, respectively, compared to the respective soils without manure application. In contrast, BC application reduced DC desorption by 73%, 66%, and 65%, in S1, S2, and S3, respectively, compared to the soils without any amendment. The highest DC sorption after BC application could be due to H bonding, π–π EDA interactions, and diffusion into the pores of BC. Hence, mesquite wood-waste-derived BC can effectively be used to enhance DC retention in contaminated soil to ensure a sustainable ecosystem.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1886
Author(s):  
Igor Donskoy ◽  
Aleksandr Kozlov

This study presents experimental studies of charcoal gasification with CO2 at different heating rates (1, 5, 10, 20, and 50 K min−1). The kinetics of the reaction C + CO2 under pore-diffusion control is studied. We propose a new method for the proper determination of activation energy during the processing of thermogravimetric curves of porous carbon gasification under conditions of pore-diffusion resistance. The results of the inverse kinetic problem solution are compared with different hypotheses about the regime of the investigated heterogeneous reaction process (kinetic, diffusion, pore-diffusion). The change of reaction regimes from kinetic to diffusion is detected during charcoal gasification at different heating rates. At heating rates of 5–20 K min−1, the values of activation energy of carbon gasification reaction in the carbon dioxide atmosphere, obtained by the proposed method, closely match the data found in the previous studies. The use of diffusion models in the processing of thermogravimetric curves determines the conditions under which conventional kinetic models fail to provide adequate information about the temperature dependence of the heterogeneous reaction rate.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 315 ◽  
Author(s):  
Makoto Fukuda ◽  
Hiroki Yoshimoto ◽  
Hitoshi Saomoto ◽  
Kiyotaka Sakai

Hemoconcentration membranes used in cardiopulmonary bypass require a pore structure design with high pure water permeability, which does not allow excessive protein adsorption and useful protein loss. However, studies on hemoconcentration membranes have not been conducted yet. The purpose of this study was to analyze three-dimensional pore structures and protein fouling before and after blood contact with capillary membranes using the tortuous pore diffusion model and a scanning probe microscope system. We examined two commercially available capillary membranes of similar polymer composition that are successfully used in hemoconcentration clinically. Assuming the conditions of actual use in cardiopulmonary bypass, bovine blood was perfused inside the lumens of these membranes. Pure water permeability before and after bovine blood perfusion was measured using dead-end filtration. The scanning probe microscopy system was used for analysis. High-resolution three-dimensional pore structures on the inner surface of the membranes were observed before blood contact. On the other hand, many pore structures after blood contact could not be observed due to protein fouling. The pore diameters calculated by the tortuous pore diffusion model and scanning probe microscopy were mostly similar and could be validated reciprocally. Achievable pure water permeabilities showed no difference, despite protein fouling on the pore inlets (membrane surface). In addition, low values of albumin sieving coefficient are attributable to protein fouling that occurs on the membrane surface. Therefore, it is essential to design the membrane structure that provides the appropriate control of fouling. The characteristics of the hemoconcentration membranes examined in this study are suitable for clinical use.


Author(s):  
Makoto Fukuda ◽  
Hiroki Yoshinoto ◽  
Hitoshi Saomoto ◽  
Kiyotaka Sakai

Hemoconcentration membranes used in cardiopulmonary bypass require a pore structure design with high pure water permeability, and which does not allow protein adsorption and useful protein loss. However, studies on hemoconcentration membranes have not been conducted yet. The purpose of this study was to analyze three-dimensional pore structures and protein fouling before and after blood contact with capillary membranes using the tortuous pore diffusion model and a scanning probe microscope system. We examined two commercially available capillary membranes of similar polymer composition that are successfully used in hemoconcentration clinically. Assuming the conditions of actual use in cardiopulmonary bypass, we perfused these membranes with bovine blood. Pure water permeability before and after bovine blood perfusion was measured using the dead-end filtration. The scanning probe microscopy system was used for analysis. High-resolution three-dimensional pore structures on the inner surface of the membranes were observed before blood contact. On the other hand, pore structures after blood contact could not be observed due to protein fouling. The pore diameters calculated by the tortuous pore diffusion model and scanning probe microscopy were mostly similar and could be validated reciprocally. Achievable pure water permeabilities showed no difference despite protein fouling, leading to low values of albumin SC. This is due to the mechanism that protein fouling occurs on the membrane surface, while there is little internal pore blocking. Therefore, controlling the fouling is essential for membranes in medical use. These characteristics of the hemoconcentration membranes examined in this study are suitable for clinical use.


Sign in / Sign up

Export Citation Format

Share Document