Lattice defects in single-crystal lithium niobate I. Transmission electron microscopy

1986 ◽  
Vol 54 (2) ◽  
pp. 185-197 ◽  
Author(s):  
H. Cerva ◽  
P. Pongratz ◽  
P. Skalicky
1994 ◽  
Vol 70 (5) ◽  
pp. 1077-1094 ◽  
Author(s):  
J. J. Couderc ◽  
S. Fritsch ◽  
M. Brieu ◽  
G. Vanderschaeve ◽  
M. Fagot ◽  
...  

1991 ◽  
Vol 35 (A) ◽  
pp. 593-599 ◽  
Author(s):  
M. Griffiths ◽  
J.E. Winegar ◽  
J.F. Mecke ◽  
R.A. Holt

AbstractX-ray diffraction (XRD) line-broadening analysis has been used to determine dislocation densities in zirconium alloys with hexagonal closepacked (hep) crystal structures and a complex distribution of dislocations reflecting the plastic, anisotropy of the material. The validity of the technique has been assessed by comparison with direct measurements of dislocation densities in deformed polycrystalline and neutron-irradiated single crystal material using transmission electron microscopy (TEM). The results show that-there is good agreement between the XRD and TEM for measurements on the deformed material whereas there is a large discrepancy for measurements on the irradiated single crystal; the XRD measurements significantly underestimating the TEM observations.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5723
Author(s):  
Tao Wang ◽  
Zhen Yang ◽  
Bingsheng Li ◽  
Shuai Xu ◽  
Qing Liao ◽  
...  

Silicon carbide (SiC) is an important material used in semiconductor industries and nuclear power plants. SiC wafer implanted with H ions can be cleaved inside the damaged layer after annealing, in order to facilitate the transfer of a thin SiC slice to a handling wafer. This process is known as “ion-cut” or “Smart-Cut”. It is worth investigating the exfoliation efficiency and residual lattice defects in H-implanted SiC before and after annealing. In the present paper, lattice damage in the 6H-SiC implanted by H2+ to a fluence of 5 × 1016 H2+/cm2 at 450 and 900 °C was investigated by a combination of Raman spectroscopy and transmission electron microscopy. Different levels of damage caused by dynamic annealing were observed by Raman spectroscopy and transmission electron microscopy in the as-implanted sample. Atomic force microscopy and scanning white-light interferometry were used to observe the sample surface morphology. Surface blisters and exfoliations were observed in the sample implanted at 450 °C and then annealed at 1100 °C for 15 min, whereas surface blisters and exfoliation occurred in the sample implanted at 900 °C without further thermal treatment. This finding can be attributed to the increase in the internal pressure of platelets during high temperature implantation. The exfoliation efficiency, location, and roughness after exfoliation were investigated and possible reasons were discussed. This work provides a basis for further understanding and improving the high-efficiency “ion-cut” technology.


1990 ◽  
Vol 5 (8) ◽  
pp. 1605-1611 ◽  
Author(s):  
S. J. Golden ◽  
H. Isotalo ◽  
M. Lanham ◽  
J. Mayer ◽  
F. F. Lange ◽  
...  

Superconducting YBaCuO thin films have been fabricated on single-crystal MgO by the spray-pyrolysis of nitrate precursors. The effects on the superconductive behavior of processing parameters such as time and temperature of heat treatment and film thickness were investigated. The superconductive behavior was found to be strongly dependent on film thickness. Films of thickness 1 μm were found to have a Tc of 67 K while thinner films showed appreciably degraded properties. Transmission electron microscopy studies have shown that the heat treatments necessary for the formation of the superconductive phase (for example, 950 °C for 30 min) also cause a substantial degree of film-substrate interdiffusion. Diffusion distances for Cu in the MgO substrate and Mg in the film were found to be sufficient to explain the degradation of the superconductive behavior in films of thickness 0.5 μm and 0.2 μm. From the concentration profiles obtained by EDS analysis diffusion coefficients at 950 °C for Mg into the YBaCuO thin film and for Cu into the MgO substrate were evaluated as 3 × 10−19 m2/s and 1 × 10−17 m2/s, respectively.


Sign in / Sign up

Export Citation Format

Share Document