scholarly journals Mapping drought-induced changes in rice area in India

2019 ◽  
Vol 40 (21) ◽  
pp. 8146-8173 ◽  
Author(s):  
Gumma ◽  
Nelson ◽  
Yamano

Rice is a staple food crop of India and is grown on 44 Mha (2011–12), 58.6% of which are irrigated. An inevitable phenomenon which looms over all aspects of human life and affects rice production in India is drought. Assessing drought damage using geospatial datasets available in the public domain, such as the Normalized Difference Vegetation Index (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), can provide specific and local ecoregion information for developing drought-resistant rice varieties. Based on multi-temporal NDVI data and field observations in 2009, we developed a methodology to identify and map drought-affected areas in India. A long-term (10-year) average of NDVI during the rainy (kharif) season (June–October) was compared with NDVI from a known drought year (2002–03) to identify changes in rice area. Rainfall data from the Tropical Rainfall Monitoring Mission (TRMM) was used to support the drought analysis. Spectral matching techniques were used to categorise the drought-affected rice areas into three classes – severe, moderate, and mild based on the intensity of damage assessed through field sampling. Based on these ground survey samples, spectral signatures were generated. It was found that the rice area was about 16% less in the drought year (2002–03) than in a normal year (2000–01). A comparison of the MODIS-derived rice area affected by drought in 2002 for each state and district against the difference in the kharif season harvested rice area between 2000 and 2002 (from official statistics) revealed a substantial difference in harvested area in 2002 that was largely attributable to drought. An 84.7% correlation was found between the MODIS-derived drought-affected area in 2002 and the reduction in harvested area from 2000–01 to 2002–03. Good spatial correlation was found between the drought-affected rice areas and reduction of rice harvested areas in different rice ecologies, indicating the usefulness of such geospatial datasets in assessing abiotic stress such as drought and its consequences.

Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Jan Musial ◽  
Alicja Malinska ◽  
Maria Budzynska ◽  
Radoslaw Gurdak ◽  
...  

Soil moisture (SM) plays an essential role in environmental studies related to wetlands, an ecosystem sensitive to climate change. Hence, there is the need for its constant monitoring. SAR (Synthetic Aperture Radar) satellite imagery is the only mean to fulfill this objective regardless of the weather. The objective of the study was to develop the methodology for SM retrieval under wetland vegetation using Sentinel-1 (S-1) satellite data. The study was carried out during the years 2015–2017 in the Biebrza Wetlands, situated in northeastern Poland. At the Biebrza Wetlands, two Sentinel-1 validation sites were established, covering grassland and marshland biomes, where a network of 18 stations for soil moisture measurement was deployed. The sites were funded by the European Space Agency (ESA), and the collected measurements are available through the International Soil Moisture Network (ISMN). The NDVI (Normalized Difference Vegetation Index) was derived from the optical imagery of a MODIS (Moderate Resolution Imaging Spectroradiometer) sensor onboard the Terra satellite. The SAR data of the Sentinel-1 satellite with VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) polarization were applied to soil moisture retrieval for a broad range of NDVI values and soil moisture conditions. The new methodology is based on research into the effect of vegetation on backscatter () changes under different soil moisture and vegetation (NDVI) conditions. It was found that the state of the vegetation may be described by the difference between  VH and  VV, or the ratio of  VV/VH, as calculated from the Sentinel-1 images. The most significant correlation coefficient for soil moisture was found for data that was acquired from the ascending tracks of the Sentinel-1 satellite, characterized by the lowest incidence angle, and SM at a depth of 5 cm. The study demonstrated that the use of the inversion approach, which was applied to the new developed models and includes the derived indices based on S-1, allowed the estimation of SM for peatlands with reasonable accuracy (RMSE ~ 10 vol. %). Due to the temporal frequency of the two S-1 satellites’ (S-1A and S-1B) acquisitions, it is possible to monitor SM changes every six days. The conclusion drawn from the study emphasizes a demand for the derivation of specific soil moisture retrieval algorithms that are suited for wetland ecosystems, where soil moisture is several times higher than in agricultural areas.


2018 ◽  
Vol 10 (12) ◽  
pp. 1979 ◽  
Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Jan Musial ◽  
Alicja Malinska ◽  
Maria Budzynska ◽  
Radoslaw Gurdak ◽  
...  

The objective of the study was to estimate soil moisture (SM) from Sentinel-1 (S-1) satellite images acquired over wetlands. The study was carried out during the years 2015–2017 in the Biebrza Wetlands, situated in north-eastern Poland. At the Biebrza Wetlands, two Sentinel-1 validation sites were established, covering grassland and marshland biomes, where a network of 18 stations for soil moisture measurement was deployed. The sites were funded by the European Space Agency (ESA), and the collected measurements are available through the International Soil Moisture Network (ISMN). The SAR data of the Sentinel-1 satellite with VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) polarization were applied to SM retrieval for a broad range of vegetation and soil moisture conditions. The methodology is based on research into the effect of vegetation on backscatter (σ°) changes under different soil moisture and Normalized Difference Vegetation Index (NDVI) values. The NDVI was derived from the optical imagery of a MODIS (Moderate Resolution Imaging Spectroradiometer) sensor onboard the Terra satellite. It was found that the state of the vegetation expressed by NDVI can be described by the indices such as the difference between σ° VH and VV, or the ratio of σ° VV/VH, as calculated from the Sentinel-1 images in the logarithmic domain. The most significant correlation coefficient for soil moisture was found for data that was acquired from the ascending tracks of the Sentinel-1 satellite, characterized by the lowest incidence angle, and SM at a depth of 5 cm. The study demonstrated that the use of the inversion approach, which was applied to the newly developed models using Water Cloud Model (WCM) that includes the derived indices based on S-1, allowed the estimation of SM for wetlands with reasonable accuracy (10 vol. %). The developed soil moisture retrieval algorithms based on S-1 data are suited for wetland ecosystems, where soil moisture values are several times higher than in agricultural areas.


2018 ◽  
Vol 10 (10) ◽  
pp. 1628 ◽  
Author(s):  
Hu Zhang ◽  
Ziti Jiao ◽  
Lei Chen ◽  
Yadong Dong ◽  
Xiaoning Zhang ◽  
...  

The reflectance anisotropy effect on albedo retrieval was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution functions (BRDFs) product, and archetypal BRDFs. Shortwave-band archetypal BRDFs were established, and validated, based on the Anisotropy Flat indeX (AFX) and time series MODIS BRDF over tile h11v03. To generate surface albedo, archetypal BRDFs were used to fit simulated reflectance, based on the least squares method. Albedo was also retrieved based on the least root-mean-square-error (RMSE) method or normalized difference vegetation index (NDVI) based prior BRDF knowledge. The difference between those albedos and the MODIS albedo was used to quantify the reflectance anisotropy effect. The albedo over tile h11v03 for day 185 in 2009 was retrieved from single directional reflectance and the third archetypal BRDF. The results show that six archetypal BRDFs are sufficient to represent the reflectance anisotropy for albedo estimation. For the data used in this study, the relative uncertainty caused by reflectance anisotropy can reach up to 7.4%, 16.2%, and 20.2% for sufficient, insufficient multi-angular and single directional observations. The intermediate archetypal BRDFs may be used to improve the albedo retrieval accuracy from insufficient or single observations with a relative uncertainty range of 8–15%.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 40
Author(s):  
Guang Yang ◽  
Yuntao Ma ◽  
Jiaqi Hu

The boundary of urban built-up areas is the baseline data of a city. Rapid and accurate monitoring of urban built-up areas is the prerequisite for the boundary control and the layout of urban spaces. In recent years, the night light satellite sensors have been employed in urban built-up area extraction. However, the existing extraction methods have not fully considered the properties that directly reflect the urban built-up areas, like the land surface temperature. This research first converted multi-source data into a uniform projection, geographic coordinate system and resampling size. Then, a fused variable that integrated the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) night light images, the Moderate-resolution Imaging Spectroradiometer (MODIS) surface temperature product and the normalized difference vegetation index (NDVI) product was designed to extract the built-up areas. The fusion results showed that the values of the proposed index presented a sharper gradient within a smaller spatial range, compared with the only night light images. The extraction results were tested in both the area sizes and the spatial locations. The proposed index performed better in both accuracies (average error rate 1.10%) and visual perspective. We further discussed the regularity of the optimal thresholds in the final boundary determination. The optimal thresholds of the proposed index were more stable in different cases on the premise of higher accuracies.


2021 ◽  
Vol 13 (4) ◽  
pp. 719
Author(s):  
Xiuxia Li ◽  
Shunlin Liang ◽  
Huaan Jin

Leaf area index (LAI) and normalized difference vegetation index (NDVI) are key parameters for various applications. However, due to sensor tradeoff and cloud contaminations, these data are often temporally intermittent and spatially discontinuous. To address the discontinuities, this study proposed a method based on spectral matching of 30 m discontinuous values from Landsat data and 500 m temporally continuous values from Moderate-resolution Imaging Spectroradiometer (MODIS) data. Experiments have proven that the proposed method can effectively yield spatiotemporally continuous vegetation products at 30 m spatial resolution. The results for three different study areas with NDVI and LAI showed that the method performs well in restoring the time series, fills in the missing data, and reasonably predicts the images. Remarkably, the proposed method could address the issue when no cloud-free data pairs are available close to the prediction date, because of the temporal information “borrowed” from coarser resolution data. Hence, the proposed method can make better use of partially obscured images. The reconstructed spatiotemporally continuous data have great potential for monitoring vegetation, agriculture, and environmental dynamics.


2016 ◽  
Vol 51 (7) ◽  
pp. 858-868
Author(s):  
Marcos Cicarini Hott ◽  
Luis Marcelo Tavares de Carvalho ◽  
Mauro Antonio Homem Antunes ◽  
Polyanne Aguiar dos Santos ◽  
Tássia Borges Arantes ◽  
...  

Abstract: The objective of this work was to analyze the development of grasslands in Zona da Mata, in the state of Minas Gerais, Brazil, between 2000 and 2013, using a parameter based on the growth index of the normalized difference vegetation index (NDVI) from the moderate resolution imaging spectroradiometer (Modis) data series. Based on temporal NDVI profiles, which were used as indicators of edaphoclimatic conditions, the growth index (GI) was estimated for 16-day periods throughout the spring season of 2012 to early 2013, being compared with the average GI from 2000 to 2011, used as the reference period. Currently, the grassland areas in Zona da Mata occupy approximately 1.2 million hectares. According to the used methods, 177,322 ha (14.61%) of these grassland areas have very low vegetative growth; 577,698 ha (45.96%) have low growth; 433,475 ha (35.72%) have balanced growth; 39,980 ha (3.29%) have high growth; and 5,032 ha (0.41%) have very high vegetative growth. The grasslands had predominantly low vegetative growth during the studied period, and the NDVI/Modis series is a useful source of data for regional assessments.


2018 ◽  
Vol 10 (10) ◽  
pp. 1601 ◽  
Author(s):  
Carl Talsma ◽  
Stephen Good ◽  
Diego Miralles ◽  
Joshua Fisher ◽  
Brecht Martens ◽  
...  

Accurately estimating evapotranspiration (ET) at large spatial scales is essential to our understanding of land-atmosphere coupling and the surface balance of water and energy. Comparisons between remote sensing-based ET models are difficult due to diversity in model formulation, parametrization and data requirements. The constituent components of ET have been shown to deviate substantially among models as well as between models and field estimates. This study analyses the sensitivity of three global ET remote sensing models in an attempt to isolate the error associated with forcing uncertainty and reveal the underlying variables driving the model components. We examine the transpiration, soil evaporation, interception and total ET estimates of the Penman-Monteith model from the Moderate Resolution Imaging Spectroradiometer (PM-MOD), the Priestley-Taylor Jet Propulsion Laboratory model (PT-JPL) and the Global Land Evaporation Amsterdam Model (GLEAM) at 42 sites where ET components have been measured using field techniques. We analyse the sensitivity of the models based on the uncertainty of the input variables and as a function of the raw value of the variables themselves. We find that, at 10% added uncertainty levels, the total ET estimates from PT-JPL, PM-MOD and GLEAM are most sensitive to Normalized Difference Vegetation Index (NDVI) (%RMSD = 100.0), relative humidity (%RMSD = 122.3) and net radiation (%RMSD = 7.49), respectively. Consistently, systemic bias introduced by forcing uncertainty in the component estimates is mitigated when components are aggregated to a total ET estimate. These results suggest that slight changes to forcing may result in outsized variation in ET partitioning and relatively smaller changes to the total ET estimates. Our results help to explain why model estimates of total ET perform relatively well despite large inter-model divergence in the individual ET component estimates.


2012 ◽  
Vol 84 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Fábio M. Breunig ◽  
Lênio S. Galvão ◽  
Antônio R. Formaggio ◽  
José C.N. Epiphanio

Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI1640 and NDWI2120) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.


2016 ◽  
Vol 14 (3) ◽  
pp. e0907 ◽  
Author(s):  
Mostafa K. Mosleh ◽  
Quazi K. Hassan ◽  
Ehsan H. Chowdhury

This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document