Applicability of optimized hyperspectral indices for estimating Betalain content in Suaeda salsa

2021 ◽  
Vol 42 (14) ◽  
pp. 5215-5235
Author(s):  
Rukeya Sawut ◽  
Ying Li ◽  
Yu Liu ◽  
Nijat Kasim ◽  
Wei Tao
Keyword(s):  
Plant Science ◽  
2009 ◽  
Vol 176 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Cui-Hua Qi ◽  
Min Chen ◽  
Jie Song ◽  
Bao-Shan Wang
Keyword(s):  

2021 ◽  
Author(s):  
Qi Chen ◽  
Huansong Xie ◽  
Guanyun Wei ◽  
Xiaorui Guo ◽  
Jian Zhang ◽  
...  

Abstract Background: Salinization of soil is an urgent problem that restricts agroforestry production and environment protection. Substantial accumulation of metal ion or high alkaline alters plant metabolites and may even cause plant death. In order to explore the differences in the response strategies between Suaeda salsa (S. salsa) and Puccinellia tenuiflora (P. tenuiflora), two main constructive species that survive in saline-alkali soil, their metabolic differences were characterized.Result: Metabolomics was conducted to study the role of metabolic differences between S. salsa and P. tenuiflora under saline-alkali stress. A total of 68 significantly different metabolites were identified by GC-MS, including 9 sugars, 13 amino acids, 8 alcohols, and 34 acids. A more detailed analysis indicated that P. tenuiflora utilizes sugars more effectively and may be salt-alkali tolerant via sugar consumption while S. salsa mainly utilizes amino acids, alcohols, and acids to resist salt-alkali stress. Measurement of phenolic compounds showed that more C6C3C6-compounds were accumulated in P. tenuiflora while more C6C1-compounds, phenolic compounds that can be used to defense stress as signaling molecules, were accumulated in S. salsa.Conclusion: Our observations suggest that S. salsa resists the toxicity of saline-alkali stress using aboveground organs and P. tenuiflora eliminates the poison of saline-alkali via roots. S. salsa has a stronger ability of habitat transformation and can provide better habitat for other plants.


Plant Science ◽  
2007 ◽  
Vol 173 (5) ◽  
pp. 487-494 ◽  
Author(s):  
Chang-Quan Wang ◽  
Heng Song ◽  
Xiang-Zhong Gong ◽  
Qin-Guang Hu ◽  
Feng Liu ◽  
...  

2006 ◽  
Vol 33 (7) ◽  
pp. 697 ◽  
Author(s):  
Wang Chang-Quan ◽  
Liu Tao

Seeds of the halophyte Suaeda salsa (L.) Pall. were cultured in 24 h dark and 14 h blue light / 10 h dark to examine the role of blue light and the blue-light-absorbing photoreceptor cryptochrome 2 (CRY2) in betacyanin accumulation, hypocotyl elongation and cotyledon opening in S. salsa seedlings. Darkness significantly promoted betacyanin accumulation and hypocotyl elongation but inhibited cotyledon opening. Blue light suppressed betacyanin accumulation and hypocotyl elongation but stimulated cotyledon opening. Betacyanin in S. salsa seedlings decomposed with time in blue light. Western blot analysis showed that CRY2 protein accumulated both in hypocotyls and cotyledons of S. salsa seedlings grown in dark, but degraded with time in blue light, which was paralleled by a decrease of tyrosine hydroxylation activity of tyrosinase, a key enzyme involved in the betalain biosynthesis pathway. These results suggest that CRY2 protein mediates betacyanin decomposition via inactivation of tyrosinase in S. salsa seedlings, and the blue-light-dependent degradation of CRY2 protein is crucial to its function.


2020 ◽  
Vol 12 (18) ◽  
pp. 7457
Author(s):  
Jie Xu ◽  
Yi Liu ◽  
Chao Zhu ◽  
Honglei Jia ◽  
Changyan Tian ◽  
...  

Halophytes have been studied as a model for morphological traits of adaptation to saline environments. However, little information has been given on plant growth, chlorophyll fluorescence responses, and change of ion content in halophytes grown in an aniline–salinity coexistent environment. This study hypothesized that aniline could induce alterations in plant growth, chlorophyll fluorescence, and ion content in Suaeda salsa, but salinity could promote the tolerance of halophytes to aniline. A 6 (aniline) × 3 (NaCl) factorial experiment (for a total of 18 treatments) was conducted to test the above hypothesis. After 30 d of cultivation, roots and shoots were harvested separately to analyze the effects of salinity on the seedling growth under aniline stress. Biomass accumulation was inhibited by aniline treatment, and the inhibition was significantly alleviated by 200 mM NaCl. The change in chlorophyll fluorescence in leaves with aniline stress was moderated by the addition of NaCl. The removal efficiency of aniline was significantly enhanced by moderate salinity. Aniline stress decreased the accumulation of Mg2+, but various concentrations of NaCl increased the accumulation of Mg2+, especially with 200 mM NaCl in both roots and shoots. Both aniline and salinity decreased the content of Ca2+. There was a negative correlation between the K+ and NaCl concentrations and between the Cl− and aniline concentrations. Our results indicated that Suaeda salsa may be suitable for the remediation of salinity and aniline-enriched wastewater.


Sign in / Sign up

Export Citation Format

Share Document