Cryptochrome 2 is involved in betacyanin decomposition induced by blue light in Suaeda salsa

2006 ◽  
Vol 33 (7) ◽  
pp. 697 ◽  
Author(s):  
Wang Chang-Quan ◽  
Liu Tao

Seeds of the halophyte Suaeda salsa (L.) Pall. were cultured in 24 h dark and 14 h blue light / 10 h dark to examine the role of blue light and the blue-light-absorbing photoreceptor cryptochrome 2 (CRY2) in betacyanin accumulation, hypocotyl elongation and cotyledon opening in S. salsa seedlings. Darkness significantly promoted betacyanin accumulation and hypocotyl elongation but inhibited cotyledon opening. Blue light suppressed betacyanin accumulation and hypocotyl elongation but stimulated cotyledon opening. Betacyanin in S. salsa seedlings decomposed with time in blue light. Western blot analysis showed that CRY2 protein accumulated both in hypocotyls and cotyledons of S. salsa seedlings grown in dark, but degraded with time in blue light, which was paralleled by a decrease of tyrosine hydroxylation activity of tyrosinase, a key enzyme involved in the betalain biosynthesis pathway. These results suggest that CRY2 protein mediates betacyanin decomposition via inactivation of tyrosinase in S. salsa seedlings, and the blue-light-dependent degradation of CRY2 protein is crucial to its function.

2019 ◽  
Vol 116 (52) ◽  
pp. 27133-27141 ◽  
Author(s):  
Jathish Ponnu ◽  
Tabea Riedel ◽  
Eva Penner ◽  
Andrea Schrader ◽  
Ute Hoecker

In plants, the cryptochrome photoreceptors suppress the activity of the COP1/SPA ubiquitin ligase to initiate photomorphogenesis in blue light. Both CRY1 and CRY2 interact with the COP1/SPA complex in a blue light-dependent manner. The mechanisms underlying the inhibition of COP1 activity through direct interactions with photoactivated CRYs are not fully understood. Here we tested the hypothesis that CRY2 inhibits COP1 by displacing the degradation substrates from COP1. To this end, we analyzed the role of a conserved valine-proline (VP) motif in the C-terminal domain of CRY2 (CCT2), which resembles the core COP1-WD40–binding sequences present in the substrates of COP1. We show that the VP motif in CRY2 is essential for the interaction of CRY2 with COP1 in yeast two-hybrid assays andin planta. Mutations in the VP motif of CRY2 abolished the CRY2 activity in photomorphogenesis, indicating the importance of VP. The interaction between COP1 and its VP-containing substrate PAP2 was prevented in the presence of coexpressed CRY2, but not in the presence of CRY2 carrying a VP mutation. Thus, since both PAP2 and CRY2 engage VP motifs to bind to COP1, these results demonstrate that CRY2 outcompetes PAP2 for binding to COP1. We further found that the previously unknown interaction between SPA1-WD and CCT2 occurs via the VP motif in CRY2, suggesting structural similarities in the VP-binding pockets of COP1-WD40 and SPA1-WD40 domains. A VP motif present in CRY1 is also essential for binding to COP1. Thus, CRY1 and CRY2 might share this mechanism of COP1 inactivation.


2006 ◽  
Vol 76 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Yukari Egashira ◽  
Shin Nagaki ◽  
Hiroo Sanada

We investigated the change of tryptophan-niacin metabolism in rats with puromycin aminonucleoside PAN-induced nephrosis, the mechanisms responsible for their change of urinary excretion of nicotinamide and its metabolites, and the role of the kidney in tryptophan-niacin conversion. PAN-treated rats were intraperitoneally injected once with a 1.0% (w/v) solution of PAN at a dose of 100 mg/kg body weight. The collection of 24-hour urine was conducted 8 days after PAN injection. Daily urinary excretion of nicotinamide and its metabolites, liver and blood NAD, and key enzyme activities of tryptophan-niacin metabolism were determined. In PAN-treated rats, the sum of urinary excretion of nicotinamide and its metabolites was significantly lower compared with controls. The kidneyα-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) activity in the PAN-treated group was significantly decreased by 50%, compared with the control group. Although kidney ACMSD activity was reduced, the conversion of tryptophan to niacin tended to be lower in the PAN-treated rats. A decrease in urinary excretion of niacin and the conversion of tryptophan to niacin in nephrotic rats may contribute to a low level of blood tryptophan. The role of kidney ACMSD activity may be minimal concerning tryptophan-niacin conversion under this experimental condition.


2020 ◽  
Vol 20 ◽  
Author(s):  
Helen Shiphrah Vethakanraj ◽  
Niveditha Chandrasekaran ◽  
Ashok Kumar Sekar

: Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a “double-edged sword” by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.


Reproduction ◽  
2013 ◽  
Vol 146 (2) ◽  
pp. 119-133 ◽  
Author(s):  
Barbara Ambruosi ◽  
Gianluca Accogli ◽  
Cécile Douet ◽  
Sylvie Canepa ◽  
Géraldine Pascal ◽  
...  

Oviductal environment affects preparation of gametes for fertilization, fertilization itself, and subsequent embryonic development. The aim of this study was to evaluate the effect of oviductal fluid and the possible involvement of deleted in malignant brain tumor 1 (DMBT1) on IVF in porcine and equine species that represent divergent IVF models. We first performed IVF after pre-incubation of oocytes with or without oviductal fluid supplemented or not with antibodies directed against DMBT1. We showed that oviductal fluid induces an increase in the monospermic fertilization rate and that this effect is canceled by the addition of antibodies, in both porcine and equine species. Moreover, pre-incubation of oocytes with recombinant DMBT1 induces an increase in the monospermic fertilization rate in the pig, confirming an involvement of DMBT1 in the fertilization process. The presence of DMBT1 in the oviduct at different stages of the estrus cycle was shown by western blot and confirmed by immunohistochemical analysis of ampulla and isthmus regions. The presence of DMBT1 in cumulus–oocyte complexes was shown by western blot analysis, and the localization of DMBT1 in the zona pellucida and cytoplasm of equine and porcine oocytes was observed using immunofluorescence analysis and confocal microscopy. Moreover, we showed an interaction between DMBT1 and porcine spermatozoa using surface plasmon resonance studies. Finally, a bioinformatic and phylogenetic analysis allowed us to identify the DMBT1 protein as well as a DMBT1-like protein in several mammals. Our results strongly suggest an important role of DMBT1 in the process of fertilization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract Background A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. Methods The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. Results In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. Conclusions In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


2021 ◽  
pp. 1-8
Author(s):  
Tiange Wu ◽  
Xiaoning Wang ◽  
Kai Ren ◽  
Xiaochen Huang ◽  
Jiankai Liu

Introduction: The aim of this study was to investigate the modified proteins in methylene blue/light-treated frozen plasma (MB-FP) compared with fresh frozen plasma (FFP) in order to gain a better application of MB/light-treated plasma in clinic transfusion. Methods: MB-FP and FFP were collected from Changchun central blood station, and a trichloroacetic acid/acetone precipitation method was used to remove albumin for the enrichment of lower abundance proteins. The plasma protein in MB-FP and FFP were separated using two-dimensional gel electrophoresis (2-DE) and the differentially expressed protein spots were analyzed using mass spectrometry. Finally, the differentially expressed proteins were tested using Western blot and enzyme-linked immunosorbent assay (ELISA). Results: Approximately 14 differentially expressed protein spots were detected in the MB-FP, and FFP was chosen as the control. After 2-DE comparison analysis and mass spectrometry, 8 significantly differentially expressed protein spots were identified, corresponding to 6 different proteins, including complement C1r subcomponent (C1R), inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4), keratin, type II cytoskeletal 1 (KRT1), hemopexin (HPX), fibrinogen gamma chain (FGG), and transthyretin (TTR). Western blot showed no significant difference in the expression level of KRT1 between MB-FP and FFP (p > 0.05). Both Western blot and ELISA indicated that the level of HPX was significantly higher in FFP than in MB-FP (p < 0.05). Conclusion: This comparative proteomics study revealed that some significantly modified proteins occur in MB-FP, such as C1R, ITI-H4, KRT1, HPX, FGG, and TTR. Our findings provide more theoretical data for using MB-FP in transfusion medicine. However, the relevance of the data for the transfusion of methylene blue/light-treated plasma remains unclear. The exact modification of these proteins and the effects of these modified proteins on their functions and their effects in clinical plasma infusion need to be further studied.


1982 ◽  
Vol 257 (15) ◽  
pp. 8738-8744
Author(s):  
F G Cánovas ◽  
F García-Carmona ◽  
J V Sánchez ◽  
J L Pastor ◽  
J A Teruel

2021 ◽  
Vol 186 ◽  
pp. 109025
Author(s):  
João Humberto Dias Campos ◽  
Meiry Edivirges Alvarenga ◽  
Maykon Alves Lemes ◽  
José Antônio do Nascimento Neto ◽  
Freddy Fernandes Guimarães ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document