Observation error diagnostics and applicability evaluation of MHS brightness temperatures in RMAPS-CA

2021 ◽  
Vol 42 (15) ◽  
pp. 5626-5647
Author(s):  
Yufen Ma ◽  
Ali Mamtimin ◽  
Guangxing Zhang
2017 ◽  
Vol 145 (3) ◽  
pp. 1063-1081 ◽  
Author(s):  
Masashi Minamide ◽  
Fuqing Zhang

An empirical flow-dependent adaptive observation error inflation (AOEI) method is proposed for assimilating all-sky satellite brightness temperatures through observing system simulation experiments with an ensemble Kalman filter. The AOEI method adaptively inflates the observation error when the absolute difference (innovation) between the observed and simulated brightness temperatures is greater than the square root of the combined variance of the uninflated observational error variance and ensemble-estimated background error variance. This adaptive method is designed to limit erroneous analysis increments where there are large representativeness errors, as is often the case for cloudy-affected radiances, even if the forecast model and the observation operator (the radiative transfer model) are perfect. The promising performance of this newly proposed AOEI method is demonstrated through observing system simulation experiments assimilating all-sky brightness temperatures from GOES-R (now GOES-16) in comparison with experiments using an alternative empirical observation error inflation method proposed by Geer and Bauer. It is found that both inflation methods perform similarly in the accuracy of the analysis and in the containment of potential representativeness errors; both outperform experiments using a constant observation error without inflation. Besides being easier to implement, the empirical AOEI method proposed here also shows some advantage over the Geer–Bauer method in better updating variables at large scales. Large representative errors are likely to be compounded by unavoidable uncertainties in the forecast system and/or nonlinear observation operator (as for the radiative transfer model), in particular in the areas of moist processes, as will be the case for real-data cloudy radiances, which will be further investigated in future studies.


2007 ◽  
Vol 135 (1) ◽  
pp. 152-172 ◽  
Author(s):  
G. Deblonde ◽  
J-F. Mahfouf ◽  
B. Bilodeau ◽  
D. Anselmo

Abstract Currently, satellite radiances in the Canadian Meteorological Centre operational data assimilation system are only assimilated in clear skies. A two-step method, developed at the European Centre for Medium-Range Weather Forecasts, is considered to assimilate Special Sensor Microwave Imager (SSM/I) observations in rainy atmospheres. The first step consists of a one-dimensional variational data assimilation (1DVAR) method. Model temperature and humidity profiles are adjusted by assimilating either SSM/I brightness temperatures or retrieved surface rain rates (derived from SSM/I brightness temperatures). In the second step, 1DVAR column-integrated water vapor analyses are assimilated in four-dimensional variational data assimilation (4DVAR). At the Meteorological Service of Canada, such a 1DVAR assimilation system has been developed. Model profiles are obtained from a research version of the Global Environmental Multi-Scale model. Several issues raised while developing the 1DVAR system are addressed. The impact of the size of the observation error is studied when brightness temperatures are assimilated. For two case studies, analyses are derived when either surface rain rate or brightness temperatures are assimilated. Differences in the analyzed fields between these configurations are discussed and shortcomings of each approach are identified. Results of sensitivity studies are also provided. First the impact of observation error correlation between channels is investigated. Second, the size of the background temperature error is varied to assess its impact on the analyzed column-integrated water vapor. Third, the importance of each moist physical scheme is investigated. Finally, the portability of moist physical schemes specifically developed for data assimilation is discussed.


2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Xu Xu ◽  
Xiaolei Zou

Global Positioning System (GPS) radio occultation (RO) and radiosonde (RS) observations are two major types of observations assimilated in numerical weather prediction (NWP) systems. Observation error variances are required input that determines the weightings given to observations in data assimilation. This study estimates the error variances of global GPS RO refractivity and bending angle and RS temperature and humidity observations at 521 selected RS stations using the three-cornered hat method with additional ERA-Interim reanalysis and Global Forecast System forecast data available from 1 January 2016 to 31 August 2019. The global distributions, of both RO and RS observation error variances, are analyzed in terms of vertical and latitudinal variations. Error variances of RO refractivity and bending angle and RS specific humidity in the lower troposphere, such as at 850 hPa (3.5 km impact height for the bending angle), all increase with decreasing latitude. The error variances of RO refractivity and bending angle and RS specific humidity can reach about 30 N-unit2, 3 × 10−6 rad2, and 2 (g kg−1)2, respectively. There is also a good symmetry of the error variances of both RO refractivity and bending angle with respect to the equator between the Northern and Southern Hemispheres at all vertical levels. In this study, we provide the mean error variances of refractivity and bending angle in every 5°-latitude band between the equator and 60°N, as well as every interval of 10 hPa pressure or 0.2 km impact height. The RS temperature error variance distribution differs from those of refractivity, bending angle, and humidity, which, at low latitudes, are smaller (less than 1 K2) than those in the midlatitudes (more than 3 K2). In the midlatitudes, the RS temperature error variances in North America are larger than those in East Asia and Europe, which may arise from different radiosonde types among the above three regions.


2021 ◽  
Vol 692 (2) ◽  
pp. 022052
Author(s):  
Sheng Hu ◽  
Wei Chen ◽  
Ruidun Zhao ◽  
Ling Lu ◽  
Hao Cao ◽  
...  

2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


2016 ◽  
Vol 142 (697) ◽  
pp. 1767-1780 ◽  
Author(s):  
Niels Bormann ◽  
Massimo Bonavita ◽  
Rossana Dragani ◽  
Reima Eresmaa ◽  
Marco Matricardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document