Deep support vector machine for PolSAR image classification

2021 ◽  
Vol 42 (17) ◽  
pp. 6502-6540
Author(s):  
Onuwa Okwuashi ◽  
Christopher E. Ndehedehe ◽  
Dupe Nihinlola Olayinka ◽  
Aniekan Eyoh ◽  
Hosanna Attai
2010 ◽  
Vol 19 (11) ◽  
pp. 2983-2999 ◽  
Author(s):  
Francesca Bovolo ◽  
Lorenzo Bruzzone ◽  
Lorenzo Carlin

2007 ◽  
pp. 341-353
Author(s):  
Toru Fujinaka ◽  
Michifumi Yoshioka ◽  
Sigeru Omatu

2020 ◽  
Author(s):  
Harith Al-Sahaf ◽  
Mengjie Zhang ◽  
M Johnston

In machine learning, it is common to require a large number of instances to train a model for classification. In many cases, it is hard or expensive to acquire a large number of instances. In this paper, we propose a novel genetic programming (GP) based method to the problem of automatic image classification via adopting a one-shot learning approach. The proposed method relies on the combination of GP and Local Binary Patterns (LBP) techniques to detect a predefined number of informative regions that aim at maximising the between-class scatter and minimising the within-class scatter. Moreover, the proposed method uses only two instances of each class to evolve a classifier. To test the effectiveness of the proposed method, four different texture data sets are used and the performance is compared against two other GP-based methods namely Conventional GP and Two-tier GP. The experiments revealed that the proposed method outperforms these two methods on all the data sets. Moreover, a better performance has been achieved by Naïve Bayes, Support Vector Machine, and Decision Trees (J48) methods when extracted features by the proposed method have been used compared to the use of domain-specific and Two-tier GP extracted features. © Springer International Publishing 2013.


Author(s):  
Jeena Augustine

Abstract: Emotions recognition from the speech is one of the foremost vital subdomains within the sphere of signal process. during this work, our system may be a two-stage approach, particularly feature extraction, and classification engine. Firstly, 2 sets of options square measure investigated that are: thirty-nine Mel-frequency Cepstral coefficients (MFCC) and sixty-five MFCC options extracted supported the work of [20]. Secondly, we've got a bent to use the Support Vector Machine (SVM) because the most classifier engine since it is the foremost common technique within the sector of speech recognition. Besides that, we've a tendency to research the importance of the recent advances in machine learning along with the deep kerne learning, further because the numerous types of auto-encoders (the basic auto-encoder and also the stacked autoencoder). an oversized set of experiments unit conducted on the SAVEE audio information. The experimental results show that the DSVM technique outperforms the standard SVM with a classification rate of sixty-nine. 84% and 68.25% victimization thirty-nine MFCC, severally. To boot, the auto encoder technique outperforms the standard SVM, yielding a classification rate of 73.01%. Keywords: Emotion recognition, MFCC, SVM, Deep Support Vector Machine, Basic auto-encoder, Stacked Auto encode


Sign in / Sign up

Export Citation Format

Share Document