Air-Cooling Enhancement with Delta Winglet Vortex Generators in Entrance Region of In-Line Array Electronic Modules

2007 ◽  
Vol 28 (4) ◽  
pp. 372-379 ◽  
Author(s):  
S. Chomdee ◽  
T. Kiatsiriroat
Author(s):  
Seham Shahid ◽  
Martin Agelin-Chaab

Abstract In this paper, the problem of air cooling and temperature nonuniformity at the cell and pack level is addressed. Passive techniques are developed by integrating jet inlets and vortex generators (VGs) in a simple battery pack with the goal to achieve an effective cooling, and the desired temperature uniformity at the cell and pack level to less than 5 °C, without an increase in the required mass flow and power requirements. Moreover, various configurations of the developed techniques are assessed and compared. In order to achieve the objectives, computational fluid dynamics (CFD) is used to conduct numerical studies on the battery packs. The results concluded that by adding both the delta winglet (DW) vortex generator arrays and jet inlet arrays in the same configuration, improvements in temperature reduction and uniformity can be achieved. The results showed that the maximum temperature of the battery pack was reduced by ∼6% and the temperature uniformity at the pack level was increased by 24%. Additionally, a ∼37% improvement in the temperature uniformity at cell level was achieved.


2012 ◽  
Vol 26 (9) ◽  
pp. 2949-2958 ◽  
Author(s):  
Seong Won Hwang ◽  
Dong Hwan Kim ◽  
June Kee Min ◽  
Ji Hwan Jeong

2019 ◽  
Vol 29 (8) ◽  
pp. 2545-2565
Author(s):  
Safeer Hussain ◽  
Jian Liu ◽  
Lei Wang ◽  
Bengt Ake Sunden

Purpose The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs). Design/methodology/approach This numerical study presents the enhancement of thermal performance in the trailing part of a gas turbine blade. In the trailing part, generally, pin fins are used either in staggered or in-line arrangements to enhance the heat transfer. In this study, based on the idea from heat exchangers, pin fins are combined with VGs. A pair of VGs is embedded in the boundary layer upstream of each pin fin in the first row of the pin fin array having an in-line configuration. The effects of the VG angle relative to the streamwise direction and streamwise distance between the pin fin and VGs are investigated at various Reynolds numbers. Findings The results indicated that the endwall heat transfer is enhanced with the addition of VGs and the heat transfer from the surfaces of the pin fins. The level of heat transfer enhancement compared to the case without VGs is more significant at high Reynolds number. The surfaces of the VGs also show a significant amount of heat transfer. Study of the angle of the attack suggested that a high angle of attack is more appropriate for pin fin cooling enhancement whereas an intermediate gap between the VGs and pin fins shows considerable improvement of thermal performance compared to the small and large gaps. The phenomenon of heat transfer augmentation with the VGs is demonstrated by the flow field. It shows that the enhancement of heat transfer is governed by the mixing of the flow as a result of the interaction of vortices generated by the VGs and pin fins. Originality/value VGs are used to disturb the thermal boundary layer. It shows that heat transfer is augmented as a result of the interaction of vortices associated with VGs and pin fins.


Author(s):  
Md. Islam ◽  
Z. Chong ◽  
S. Bojanampati

Various technologies have been developed to enhance flow mixing and heat transfer in order to develop an efficient compact heat exchanging devices. Vortex generators/turbulent promoters generate the vortices which reduce the boundary layer thickness and introduce the better mixing of the fluid to enhance the heat transfer. In this research experimental investigations have been carried out to study the effect of delta winglet vortex generator pairs on heat transfer and flow behavior. To generate longitudinal vortex flow, two pairs of the delta winglet vortex generators (DWVG) with the length of 10mm and winglet-pitch to tube-diameter ratio (PR = 4.8) are mounted on the inner wall of a circular tube. The DWVG pairs with two different winglet-height to tube-diameter ratios (Blockage ratio, BR = 0.1 and 0.2), three attack angles (α = 10°, 20°, 30°) and three spacings between leading edges (S = 10, 15 and 20mm) are studied. The experiments were conducted with DWVGs pairs for the air flow range of Reynolds numbers 5000–25000. The influence of the DWVGs on heat transfer and pressure drop was investigated in terms of the Nusselt number and friction factor. The experimental results indicate that DWVG pair in a tube results in a considerable enhancement in Nusselt number (Nu) with some pressure penalty. It is found that DWVG increases Nu up to 85% over the smooth tube. It is also observed that Nusselt number increases with Re, blockage ratio and attack angle. Friction factor decreases with Re but increases with blockage ratio, spacing and attack angle. And 30° DWVG pair with S = 20mm, BR = 0.2 gets the highest friction factor. The Highest thermal performance enhancement (TPE) was noticed for α = 10°, S = 20mm, BR = 0.2 for turbulent flows. To obtain qualitative information on the flow behavior and vortex structures, flow was visualized by laser sheet using smoke as a tracer supplied at the entrance of the test section. The generation and development of longitudinal vortices influenced by DWVG pairs were clearly observed.


Sign in / Sign up

Export Citation Format

Share Document