Improving Photovoltaic Module Efficiency Using Water Cooling

2009 ◽  
Vol 30 (6) ◽  
pp. 499-505 ◽  
Author(s):  
Saad Odeh ◽  
Masud Behnia
2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2401-2411 ◽  
Author(s):  
Muhammad Bashir ◽  
Hafiz Ali ◽  
Khuram Amber ◽  
Muhammad Bashir ◽  
Hassan Ali ◽  
...  

The temperature of the photovoltaic module has an adverse effect on the performance of photovoltaic modules. The photovoltaic module converts a small portion of energy from solar radiations into electricity while the remaining energy wastes in the form of heat. In this study, water cooled photovoltaic/thermal system was analyzed to enhance the efficiency by absorbing the heat generated by the photovoltaic modules and allowing the photovoltaic module to work at comparatively low temperature. For this system, four photovoltaic modules of two different types were used. To investigate the cooling effect, two modules were modified by making ducts at their back surface having inlet and outlet manifolds for water-flow. The measurements were taken with cooling and without cooling of photovoltaic modules. The temperature was measured at inlet, outlet, and at different points at the back of photovoltaic modules. It was found that there was a linear trend between the module efficiency and temperature. The average module temperature of c-Si and p-Si modules without cooling was 13.6% and 7.2% lower, respectively, than the same modules without cooling. As a result of temperature drop, the average module electrical efficiency of c-Si and p-Si was 13% and 6.2% higher, respectively, compared to the modules without cooling. Flowing water also gains useful heat from photovoltaic module so the resultant overall energy of the system was much higher.


2021 ◽  
Vol 11 (2) ◽  
pp. 527-534
Author(s):  
Anton Driesse ◽  
Marios Theristis ◽  
Joshua S. Stein

2021 ◽  
Vol 45 ◽  
pp. 101111
Author(s):  
Mohammad Hassan Shahverdian ◽  
Ali Sohani ◽  
Hoseyn Sayyaadi ◽  
Saman Samiezadeh ◽  
Mohammad Hossein Doranehgard ◽  
...  

2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Wei Pang ◽  
Yongzhe Zhang ◽  
Yanan Cui ◽  
Hongwen Yu ◽  
Yu Liu ◽  
...  

The increase of operating temperature on a photovoltaic (PV) cell degrades its electrical efficiency. This paper is organized to describe our latest design of an aluminum substrate—based photovoltaic/thermal (PV/T) system. The electrical efficiency of the proposed PV/T can be increased by ∼ 20% in comparison with a conventional glass substrate-based PV. The work will benefit hybrid utilization of solar energy in development of building integrated photovoltaic systems.


2018 ◽  
Vol 67 ◽  
pp. 01009
Author(s):  
Arrad Ghani Safitra ◽  
Fifi Hesty Sholihah ◽  
Erik Tridianto ◽  
Ikhsan Baihaqi ◽  
Ni Nyoman Ayu Indah T.

Photovoltaic (PV) modules require solar radiation to generate electricity. This study aims to determine the effect of water cooling PV modules on heat transfer, output power, and electrical efficiency of PV modules. The experiments carried out in this study were to vary the heights of flooded water (with and without cooling water replacement control) and cooling water flow. Variations in the height of flooded water are 0,5 cm, 1 cm, 2 cm, and 4 cm. While the flow rate variations are 2 L/min, 4 L/min, and 8 L/min. The flooded water replacement control will be active when the PV surface temperature reached 45°C. When the temperature dropped to 35°C, the cooler is disabled to let more photon to reach PV surface. The results showed that the lowest heat transfer occurred in the variation of 4 cm flooded water height without water replacement control, i.e. 28.53 Watt, with an average PV surface temperature of 32.92°C. The highest average electric efficiency occurred in the variation of 0,5 cm flooded water height with water replacement control, i.e. 13.12%. The use of cooling water replacement control is better due to being able to skip more photons reach PV surface with low PV temperature.


2017 ◽  
Vol 21 (2) ◽  
pp. 915-923 ◽  
Author(s):  
Hafiz Ali ◽  
Muhammad Zafar ◽  
Muhammad Bashir ◽  
Muhammad Nasir ◽  
Muzaffar Ali ◽  
...  

The air borne dust deposited on the surface of photovoltaic module influence the transmittance of solar radiations from the photovoltaic modules glazing surface. This experimental work aimed to investigate the effect of dust deposited on the surface of two different types of photovoltaic modules (monocrystalline silicon and polycrystalline silicon). Two modules of each type were used and one module from each pair was left exposed to natural atmosphere for three months of winter in Taxila, Pakistan. Systematic series of measurements were conducted for the time period of three months corresponding to the different dust densities. The difference between the output parameters of clean and dirty modules provided the information of percentage loss at different dust densities. The dust density deposited on the modules surface was 0.9867 mg/cm2 at the end of the study. The results showed that dust deposition has strong impact on the performance of photovoltaic modules. The monocrystalline and polycrystalline modules showed about 20% and 16% decrease of average output power, respectively, compared to the clean modules of same type. It was found that the reduction of module efficiency (?clean ? ?dirtv) in case of monocrystalline and polycrystalline module was 3.55% and 3.01%, respectively. Moreover the loss of output power and module efficiency in monocrystalline module was more compared to the polycrystalline module.


Sign in / Sign up

Export Citation Format

Share Document