Building Integrated Photovoltaic Module-Based on Aluminum Substrate With Forced Water Cooling

2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Wei Pang ◽  
Yongzhe Zhang ◽  
Yanan Cui ◽  
Hongwen Yu ◽  
Yu Liu ◽  
...  

The increase of operating temperature on a photovoltaic (PV) cell degrades its electrical efficiency. This paper is organized to describe our latest design of an aluminum substrate—based photovoltaic/thermal (PV/T) system. The electrical efficiency of the proposed PV/T can be increased by ∼ 20% in comparison with a conventional glass substrate-based PV. The work will benefit hybrid utilization of solar energy in development of building integrated photovoltaic systems.


2013 ◽  
Vol 591 ◽  
pp. 334-337
Author(s):  
Chen Guang Wei ◽  
Yi Wang Bao ◽  
Xiao Ying Deng ◽  
Liang Jiang

There is no national standard and international standard about nominal module operating temperature (NMOT) test methods for Building Integrated Photovoltaic (BIPV) modules. An in-lab testing method for measuring NMOT of BIPV modules is proposed. Based on the real operation condition of solar cell, the effect of ambient temperature, wind speed and optimal load resistor to operating temperature were analyzed. The surface temperature, interior temperature and back temperature of BIPV module were measured and the NMOT was determined.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Guiqiang Li ◽  
Gang Pei ◽  
Ming Yang ◽  
Jie Ji

Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T) system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T) with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.



Author(s):  
Amit Kumar Dash ◽  
Sanjay Gairola ◽  
Sanjay Agrawal ◽  
Shweta Shukla

An analysis of BIPVT system has been carried out in this paper based on arrays named as solar cell tile array and semi-transparent array. Previously comparisons and performance analysis were carried out for opaque and semitransparent system in non-optimized way but in the present case it has been optimized to get better results. As far as energy efficiency and exergy is concerned semitransparent PVT has an edge as compared to others in all respect. Semitransparent PVT has higher useful energy gain by 2.5 KWH as compared to SCT. Further the electrical and thermal efficiency has been derived and a conclusion has been made that semitransparent PV cell has an edge in all respects as compared to SCT. The electrical efficiency has been increased to 17.17% from the previous 16% and overall exergy to 18.4% from previous 17.1%. i.e. an overall growth of 6.8% and 7.6% respectively.



Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 516 ◽  
Author(s):  
Mustafa Atmaca ◽  
İmdat Zafer Pektemir

The temperature of a PV (photovoltaic) panel increases when it produces electricity but its electrical efficiency decreases when the temperature increases. In addition, the electrical efficiency of the PV panel is very limited. To increase the PV efficiency, the rest of the solar irradiance must be used, together with the temperature being kept at an optimum value. With this purpose, an experimental study was conducted. Firstly, two specific photovoltaic-thermal (PV/T) systems were designed. The first was the PV/T system which used only a water heat exchanger. The other one was the PV/T system that used a water and air heat exchanger. In the latter PV/T system, air passed through both the top of the PV panel and the bottom of it while water passed through only the bottom of the panel in a separate heat exchanger. In this way, the water and air absorbed the thermal energy of the panel by means of separate heat exchangers, simultaneously. In addition to the two systems mentioned above, an uncooled photovoltaic module was also designed in order to compare the systems. As a result, three different modules were designed. This study was conducted in a natural ambient environment and on days which had different climatic conditions. The thermal, electrical and overall efficiencies of each PV/T module were determined. The results were compared with the uncooled module electrical efficiency. The results showed that when water and air were used together, it was more efficient than single usage in a PV/T system. The thermal gain of the working fluids was also found to be fairly high and so, the gained energy could be used for different purposes. For example, hot air could be used in drying systems and air condition systems. Hot water could be used in hot water supply systems.



Author(s):  
Issa Etier ◽  
Salem Nijmeh ◽  
Mohammed Shdiefat ◽  
Omar Al-Obaidy

This experimental work is looking at the properties of photovoltaic/thermal (PV-T) system, which had designed to increase the output power of the PV panel for the climate of Zarqa, Jordan. Operating temperature of the PV module has a significant impact on the performance of the PV module. However, most of the radiation energy absorbed by the PV panel is converted into heat, which is normally lost and provides no value. In order to decrease the operating temperature of the PV panel, a water cooling system with a control system had designed. Experimentally, when the PV module was operating under active water-cooling condition using the backside cooling technique, the temperature dropped significantly, which led to an increase in the electrical efficiency of solar cells by 6.86%.



2016 ◽  
Vol 819 ◽  
pp. 618-622
Author(s):  
Y. Baradey ◽  
Mohammad Nurul Alam Hawlader ◽  
M. Idres ◽  
S.I. Ihsan

Photovoltaic systems have become recently the most attractive and promising technology compared with other solar energy conversion devices. Solar energy reaches the earth’s surface in wavelengths between 0.300 and 2.50 μm. Silicon based photovoltaic systems convert only the wavelength between 0.35 to 0.82 μm of solar energy to electricity. The rest of incident solar radiation will be converted to heat, which will increase the operating temperature of the device and decrease the output power and efficiency. Maintaining the operating temperature of the PV systems at low and desired value was the main emphasis of different researches through the last decades. In this research, a special transparent glass cover (STGC) was used in order to cool down the photovoltaic module and, therefore, increase the output power and the efficiency of the module. The result showed that STGC led to 2.75% improvement in open circuit voltage, 9.6% increase in short circuit current, 26.4% increase in the output power, and 3% increase in the efficiency of the module.



2021 ◽  
Vol 45 ◽  
pp. 101111
Author(s):  
Mohammad Hassan Shahverdian ◽  
Ali Sohani ◽  
Hoseyn Sayyaadi ◽  
Saman Samiezadeh ◽  
Mohammad Hossein Doranehgard ◽  
...  


Designs ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 29
Author(s):  
Muhsin Aykapadathu ◽  
Mehdi Nazarinia ◽  
Nazmi Sellami

A crossed compound parabolic concentrator (CCPC) is a non-imaging concentrator which is a modified form of a circular 3D compound parabolic concentrator (CPC) obtained by orthogonal intersection of two 2D CPCs that have an optical efficiency in line with that of 3D CPC. The present work is about the design and fabrication of a new generation of solar concentrator: the hybrid photovoltaic (PV)/thermal absorptive/reflective CCPC module. The module has a 4× CCPC structure truncated to have a concentration of 3.6× with a half acceptance angle of 30°. Furthermore, an experimental rig was also fabricated to test the performance of the module and its feasibility in real applications such as building-integrated photovoltaic (BIPV). 3D printing and Computer Numerical Control (CNC) milling technologies were utilized to manufacture the absorber and reflective parts of the module.





2018 ◽  
Vol 240 ◽  
pp. 04004 ◽  
Author(s):  
Marek Jaszczur ◽  
Qusay Hassan ◽  
Janusz Teneta ◽  
Ewelina Majewska ◽  
Marcin Zych

The operating temperature of the photovoltaic module is an important issue because it is directly linked with system efficiency. The objective of this work is to evaluate temperature distribution in the photovoltaic module under different environmental conditions. The results shown that photovoltaic module operating temperature depends not only on the ambient temperature or solar radiation dependent but also depends on wind speed and wind direction. It is presented that the mounting conditions which are not taken into consideration by most of the literature models also play a significant role in heat transfer. Depends on mounting type an increase in module operating temperature in the range 10-15oC was observed which cause further PV system efficiency decrease of about 3.8-6.5 %.



Sign in / Sign up

Export Citation Format

Share Document