Optimization of Water Consumption in Hybrid Evaporative Cooling Air Conditioning Systems for Data Center Cooling Applications

2018 ◽  
Vol 40 (7) ◽  
pp. 559-573 ◽  
Author(s):  
Theodore A. Ndukaife ◽  
A. G. Agwu Nnanna
2019 ◽  
Vol 11 (4) ◽  
pp. 1036 ◽  
Author(s):  
Beom-Jun Kim ◽  
Junseok Park ◽  
Jae-Weon Jeong

The main objective of this study is to investigate the indoor air quality enhancement performance of two different liquid desiccant and evaporative cooling-assisted air conditioning systems, such as the variable air volume (VAV) system with the desiccant-enhanced evaporative (DEVap) cooler, and the liquid desiccant system with an indirect and direct evaporative cooling-assisted 100% outdoor air system (LD-IDECOAS), compared with the conventional VAV system. The transient simulations of concentration variations of carbon dioxide (CO2), coarse particles, and fine particles (PM10 and PM2.5) in a model office space served by each system were performed using validated system models that were found in the literature. Based on the hourly thermal loads of the model space predicted by the TRNSYS 18 program, each air conditioning system was operated virtually using a commercial equation solver program (EES). The results indicated that the LD-IDECOAS provided the lowest annual indoor CO2 concentration among all the systems considered in this research, while the VAV system with DEVap cooler exceeded the threshold concentration (i.e., 1000 ppm) during the cooling season (i.e., July, August, and September). For the indoor particulate contaminant concentrations, both liquid desiccant and evaporative cooling-assisted air conditioning systems indicated lower indoor PM2.5 and PM10 concentrations compared with the reference system. The LD-IDECOAS and the VAV with a DEVap cooler demonstrated 33.3% and 23.5% lower annual accumulated indoor PM10 concentrations than the reference system, respectively. Similarly, the annual accumulated indoor PM2.5 concentration was reduced by 16% using the LD-IDECOAS and 17.1% using the VAV with DEVap cooler.


Author(s):  
Milton Meckler

What does remain a growing concern for many users of Data Centers is their continuing availability following the explosive growth of internet services in recent years, The recent maximizing of Data Center IT virtualization investments has resulted in improving the consolidation of prior (under utilized) server and cabling resources resulting in higher overall facility utilization and IT capacity. It has also resulted in excessive levels of equipment heat release, e.g. high energy (i.e. blade type) servers and telecommunication equipment, that challenge central and distributed air conditioning systems delivering air via raised floor or overhead to rack mounted servers arranged in alternate facing cold and hot isles (in some cases reaching 30 kW/rack or 300 W/ft2) and returning via end of isle or separated room CRAC units, which are often found to fight each other, contributing to excessive energy use. Under those circumstances, hybrid, indirect liquid cooling facilities are often required to augment above referenced air conditioning systems in order to prevent overheating and degradation of mission critical IT equipment to maintain rack mounted subject rack mounted server equipment to continue to operate available within ASHRAE TC 9.9 prescribed task psychometric limits and IT manufacturers specifications, beyond which their operational reliability cannot be assured. Recent interest in new web-based software and secure cloud computing is expected to further accelerate the growth of Data Centers which according to a recent study, the estimated number of U.S. Data Centers in 2006 consumed approximately 61 billion kWh of electricity. Computer servers and supporting power infrastructure for the Internet are estimated to represent 1.5% of all electricity generated which along with aggregated IT and communications, including PC’s in current use have also been estimated to emit 2% of global carbon emissions. Therefore the projected eco-footprint of Data Centers into the future has now become a matter of growing concern. Accordingly our paper will focus on how best to improve the energy utilization of fossil fuels that are used to power Data Centers, the energy efficiency of related auxiliary cooling and power infrastructures, so as to reduce their eco-footprint and GHG emissions to sustainable levels as soon as possible. To this end, we plan to demonstrate significant comparative savings in annual energy use and reduction in associated annual GHG emissions by employing a on-site cogeneration system (in lieu of current reliance on remote electric power generation systems), introducing use of energy efficient outside air (OSA) desiccant assisted pre-conditioners to maintain either Class1, Class 2 and NEBS indoor air dew-points, as needed, when operated with modified existing (sensible only cooling and distributed air conditioning and chiller systems) thereby eliminating need for CRAC integral unit humidity controls while achieving a estimated 60 to 80% (virtualized) reduction in the number servers within a existing (hypothetical post-consolidation) 3.5 MW demand Data Center located in southeastern (and/or southern) U.S., coastal Puerto Rico, or Brazil characterized by three (3) representative microclimates ranging from moderate to high seasonal outside air (OSA) coincident design humidity and temperature.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 522
Author(s):  
Su Liu ◽  
Jae-Weon Jeong

This study investigated the annual energy saving potential and system performance of two different evaporative cooling-based liquid desiccant and evaporative cooling-assisted air conditioning systems. One system used an indirect and direct evaporative cooler with a two-stage package to match the target supply air point. The other was equipped with a single-stage, packaged dew-point evaporative cooler that used a portion of the process air, which had been dehumidified in advance. Systems installed with the two evaporative coolers were compared to determine which one was more energy efficient and which one could provide better thermal comfort for building occupants in a given climate zone, using detailed simulation data. The detailed energy consumption data of these two systems were estimated using an engineering equation solver with each component model. The results showed that the liquid desiccant and dew-point evaporative-cooler-assisted 100% outdoor air system (LDEOAS) resulted in approximately 34% more annual primary energy consumption than that of the liquid desiccant and the indirect and direct evaporative-cooler-assisted 100% outdoor air system (LDIDECOAS). However, the LDEOAS could provide drier and cooler supply air, compared with the LDIDECOAS. In conclusion, LDIDECOAS has a higher energy saving potential than LDEOAS, with an acceptable level of thermal comfort.


2017 ◽  
Vol 205 ◽  
pp. 4195-4202
Author(s):  
Yi Chen ◽  
Weichen Yu ◽  
Peishi Wu ◽  
Hongxing Yang ◽  
Yimo Luo

Author(s):  
Azridjal Aziz ◽  
Muhammad Rif’at Syahnan ◽  
Afdhal Kurniawan Mainil ◽  
Rahmat Iman Mainil

Split air conditioning systems produce reasonable amount of condensate which is usually not utilized and thrown away to the environment. On the other hand, it consumes a lot of energy during operation. The aim of this study is to investigate the improvement of air conditioning systems performance utilizing condensate. A direct evaporative cooling using condensate is incorporated on a 0.74 ton-cooling capacity of split air conditioning to decrease the air temperature before entering the condenser. Performances of the split air conditioning with and without direct evaporative cooling are compared and presented in this paper. The results show that the use of direct evaporative cooling using condensate into the air before passing through the condenser reduces the compressor discharge pressure. The decrease of the condenser pressure led to 4.7% and 7% reduction of power consumption for air conditioner without cooling load and air conditioner with 2000 W cooling load, respectively. The cooling effect and coefficient of performance (COP) increase with the decrease of compressor power. The use of direct evaporative cooling with condensate into the air before entering the condensing system can enhance the system performance and protect the environment.


In daily life Air-conditioning plays an essential role in ensuring human thermal comfort. The commercially used cooling systems are intensively power consuming. So that it is necessary to save the energy in air conditioning. Among all of them the evaporative cooling techniques is well known which gives better result in saving energy and it is environmental friendly techniques. Evaporative cooling uses the fact that the water will absorb a relatively large amount of heat in order to evapor ate. The temperature of dry air will dropped because of phase change water into water vapors. Evaporative cooling requires abundant water and it works best when relative humidity is low. Evaporative cooling will be done using three methods direct evaporativ e cooling, Indirect Evaporative cooling, combined direct-indirect evaporative cooling. The main aim of this paper is to make comfort condition in terms of Temperature and Humidity and to minimize the water consumption. In this paper at a place of dry grass or cooling pads we are using hollow bamboo as fluid conduit. In hollow bamboo water continuously flows without any restriction. Some slits or holes are provided on the bamboo to enable the water and air contact and ease the evaporative action after CFD flow simulation. After providing such geometry of contact the evaporation comes to optimism and the water consumption as well as humidity is reduced, the continuous flow of water inside hollow bamboo reduce the contact time of water with air. Due to this effect the humidity of air is comparatively less than direct contact evaporative cooler, also reduces the water consumption. This type of evaporative cooler is designed to facilitate efficient evaporation of the water and circulation of cooled air


Sign in / Sign up

Export Citation Format

Share Document