Design and analysis of a pneumatic high-impact force drive mechanism for in-pipe inspection robots

2016 ◽  
Vol 30 (19) ◽  
pp. 1260-1272 ◽  
Author(s):  
Ye Hua ◽  
Masashi Konyo ◽  
Satoshi Tadokoro
2015 ◽  
Vol 762 ◽  
pp. 169-174 ◽  
Author(s):  
Leon Brai ◽  
Radu Balan ◽  
Ciprian Lapusan

The paper presents the development of a smart sensor system that is used for measuring pipe network parameters. The developed sensor is intended for use with in pipe inspection robots that can independently explore and evaluate the constructive parameters and the condition of the pipe network. The proposed system is developed around the Atmel ATMega16 microcontroller which is connected to a set of sensors and to the robot. The sensor system was tested using the ROBIN250 mobile robot and the obtained results are presented in the paper.


Author(s):  
Amir A. F. Forough Nassiraei ◽  
Yoshikazu Mikuriya ◽  
Kazuo Ishii

In the current sewer pipe inspection technology, all commercial sewer inspection robots have a poor mobility function to pass any kind of pipe-bends such as curves and junctions so that those robots are only capable to move into the straight pipes. In this paper, we describe the design, modeling, simulation and implementation of a compact and novel moving mechanism, called "nSIR mechanism", with capability of moving into the straight pipe and passing different kinds of pipe bends without need to any intelligence of the controller or sensor reading. The design is based on the concept of passive adaptation of robot wheels to the bends in the pipe. This is accomplished by proper wheels orientation and passive damping of springs. In addition, this moving mechanism has capability to pass the different size of pipes in diameter even from a bigger diameter pipe to smaller diameter and also can pass obstacle and go down step. After describing the principle of nSIR mechanism, this paper gives experimentally that a prototype of our robot "KANTARO" includes of this mechanism can realize all the above movement functions.


2019 ◽  
Vol 19 (14) ◽  
pp. 5670-5679
Author(s):  
Hannah A. Dinovitzer ◽  
Albane Laronche ◽  
Jacques Albert

2012 ◽  
Vol 24 (6) ◽  
pp. 1054-1062 ◽  
Author(s):  
Shota Horii ◽  
◽  
Taro Nakamura

Many pipe accidents caused by corrosion or deterioration have been reported recently; hence, in-pipe inspection is needed to prevent such problems. Fiberscopes are currently used as industrial endoscopes to inspect defects in pipes. Because of friction, however, they cannot be inserted into pipes that are more than 15 m long or into complex pipes such as elbows. Therefore in-pipe inspection robots need to be selfpropelled in order to be inserted into these environments. We are developing a robot capable of propelling itself through various pipes, such as long pipes and elbow pipes, specifically, a peristaltic crawling robot using DC brushless motors for in-pipe inspection. In this study, the robot we developed was used in straight and elbow pipes with an inner diameter of 27 mm. In this paper, we derive theoretical formulas for robot locomotion speed and propulsion force and propose a special motion pattern, known as the middle motion pattern, for the robot’s peristaltic crawling pattern. We performed several experiments in a 27-mm-diameter acrylic pipe to examine the locomotion speed and propulsion force. We also developed a robot that can pass through an elbow and conducted several experiments to confirm this.


Author(s):  
Xiaoyao Shen ◽  
Yongcheng Xie

The control rod drive mechanism (CRDM) is an important safety-related component in the nuclear power plant (NPP). When CRDM steps upward or downward, the pressure-containing housing of CRDM is shocked axially by an impact force from the engagement of the magnetic pole and the armature. To ensure the structural integrity of the primary coolant loop and the functionality of CRDM, dynamic response of CRDM under the impact force should be studied. In this manuscript, the commercial finite element software ANSYS is chosen to analyze the nonlinear impact problem. A nonlinear model is setup in ANSYS, including main CRDM parts such as the control rod, poles and armatures, as well as nonlinear gaps. The transient analysis method is adopted to calculate CRDM dynamic response when it steps upward. The impact loads and displacements at typical CRDM locations are successfully obtained, which are essential for design and stress analysis of CRDM.


2013 ◽  
Vol 284-287 ◽  
pp. 778-784
Author(s):  
Woo Chun Choi ◽  
Soung Min Chung ◽  
Han Seok Bang ◽  
Hae Suk Lee ◽  
Yeon Sik Cho

When a cannonball collides with sea water, the resulting impact force influences the cannonball trajectory, depending on launching angle, initial firing speed, incident angle, and cannonball nose-cone shape. In this study, the effect of nose-cone shape of a cannonball on impact and ricocheting behavior was investigated. During collision, the flow was assumed to be non viscous and incompressible, and a source panel method was used to determine velocity potential and pressure coefficient. The nose-cone shape was expressed by Haack-series. It was found that as the radius of curvature of a cannonball nose-cone decreases, a high impact force is resulted, and that depending on impact force and impulse, the ricocheting distance varies. The results obtained in this study can be used in researching and developing new cannonballs.


2016 ◽  
Vol 7 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Jin Li ◽  
Chang Jun Liu ◽  
Xin Wen Xiong ◽  
Yi Fan Liu ◽  
Wen Jun Zhang

Abstract. This paper presents a new model for the piezoelectric actuator (PA) in the context of in the impact drive mechanism (IDM) for the in-pipe inspection application. The feature of the model is capturing the inertia of PA stack in a distributed manner as opposed to the lumped manner in literature. The benefit arising from this feature is a balanced trade-off between computational efficiency and model accuracy. The study presented in this paper included both theoretical development (i.e. the model of the piezoelectric actuator and the model of the entire IDM which includes the actuator) and experimental verification of the model. The study has shown that (1) the inertia of the PA in such a robot will significantly affect the accuracy of the entire model of IDM and (2) the simulation of the dynamic behavior with the proposed model is sufficiently accurate by comparing with the experiment. It is thus recommended that the inertia of the PA be considered in the entire model of the IDM robot. The model is an analytical type, which has a high potential to be used for the model-based control of the IDM robot and optimization of its design for a much improved performance of the IDM system.


Sign in / Sign up

Export Citation Format

Share Document