Effect of nitrogen– boron interaction on plant growth and tissue nutrient concentration of canola (Brassica napusL.)

2016 ◽  
Vol 39 (7) ◽  
pp. 922-931 ◽  
Author(s):  
Hadi Koohkan ◽  
Manouchehr Maftoun
2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

High fertilizer rates are often applied to horticulture crop production systems to produce high quality crops with minimal time in production. Much of the nutrients applied in fertilizers are not taken up by the plant and are leached out of the containers during regular irrigation. The application of plant growth promoting rhizobacteria (PGPR) can increase the availability and uptake of essential nutrients by plants, thereby reducing nutrient leaching and environmental contamination. Identification of PGPR can contribute to the formulation of biostimulant products for use in commercial greenhouse production. Here, we have identified Serratia plymuthica MBSA-MJ1 as a PGPR that can promote the growth of containerized horticulture crops grown with low fertilizer inputs. MBSA-MJ1 was applied weekly as a media drench to Petunia×hybrida (petunia), Impatiens walleriana (impatiens), and Viola×wittrockiana (pansy). Plant growth, quality, and tissue nutrient concentration were evaluated 8weeks after transplant. Application of MBSA-MJ1 increased the shoot biomass of all three species and increased the flower number of impatiens. Bacteria application also increased the concentration of certain essential nutrients in the shoots of different plant species. In vitro and genomic characterization identified multiple putative mechanisms that are likely contributing to the strain’s ability to increase the availability and uptake of these nutrients by plants. This work provides insight into the interconnectedness of beneficial PGPR mechanisms and how these bacteria can be utilized as potential biostimulants for sustainable crop production with reduced chemical fertilizer inputs.


2007 ◽  
Vol 30 (5) ◽  
pp. 773-781 ◽  
Author(s):  
S. M. Hosseini ◽  
M. Maftoun ◽  
N. Karimian ◽  
A. Ronaghi ◽  
Y. Emam

cftm ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. cftm2017.04.0029 ◽  
Author(s):  
J.K. Yarborough ◽  
J.M.B. Vendramini ◽  
M.L.A. Silveira ◽  
L.E. Sollenberger ◽  
R.G. Leon ◽  
...  

1974 ◽  
Vol 14 (66) ◽  
pp. 112 ◽  
Author(s):  
DW Turner ◽  
B Barkus

At Alstonville, New South Wales, leaf position had a greater effect than season on the nutrient concentrations of N, P, K, Ca, Mn, Cu, and Zn in the laminae of Williams bananas growing on a krasnozem soil and sampled over a 4-year period. However, season was more important for Mg. The effect of stage of plant growth was significant but much smaller than the other influences. When sampling for leaf analysis, leaf position and plant age can be standardised, but a major problem in this investigation was unpredictable, significant changes in nutrient composition from one sampling date to another. If these results are true for other soils. the data do not allow critical levels to be applied.


HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1470-1477 ◽  
Author(s):  
Martin Makgose Maboko ◽  
Isa Bertling ◽  
Christian Phillipus Du Plooy

Mycorrhizal inoculation improves nutrient uptake in a range of host plants. Insufficient nutrient uptake by plants grown hydroponically is of major environmental and economic concern. Tomato seedlings, therefore, were treated with a mycorrhizal inoculant (Mycoroot™) at transplanting to potentially enhance nutrient uptake by the plant. Then seedlings were transferred to either a temperature-controlled (TC) or a non-temperature-controlled (NTC) tunnel and maintained using the recommended (100%) or a reduced (75% and 50%) nutrient concentration. Plants grown in the NTC tunnel had significantly poorer plant growth, lower fruit mineral concentration, and lower yield compared with fruit from plants in the TC tunnel. Leaves from plants in the NTC tunnel had higher microelement concentrations than those in the TC tunnel. Highest yields were obtained from plants fertigated with 75% of the recommended nutrient concentration, and not from the 100% nutrient concentration. Application of arbuscular mycorrhizal fungi (AMF) neither enhanced plant growth, nor yield, nor fruit mineral nutrient concentrations. However, temperature control positively affected the fruit Mn and Zn concentration in the TC tunnel following AMF application.


2017 ◽  
Vol 27 (4) ◽  
pp. 563-571
Author(s):  
Ricardo Goenaga ◽  
Heber Irizarry ◽  
David Jenkins ◽  
Debbie Boykin ◽  
Angel Marrero

Research on sapodilla (Manilkara zapota) has been very limited. A field study was conducted to determine the yield potential, fruit quality traits, leaf nutrient composition, and scion/rootstock compatibility of ‘Prolific’ sapodilla grafted onto 16 sapodilla rootstock seedlings. For this purpose, seedlings (maternal half-sibs) of cultivars Adelaide, Arcilago, Aruz, Blackwood, Blocksberg, Guilbe, Hanna, Jamaica-1, Larsen, Mendigo-1, Gallera, Morning Star, Russel, Prolific, Timothe, and Vasallo-1 were used as rootstock seedlings and evaluated during 7 years of production at Isabela, PR. Year showed a significant effect on the number of fruit per hectare, yield, individual fruit weight, fruit length and diameter, and total soluble solids. Rootstock seedlings had a significant effect on the number of fruit per hectare, yield, and individual fruit weight but had no effect on other fruit traits. The year × rootstock interaction was not significant for any of the variables measured in the study. Rootstock seedlings ‘Timothe’, ‘Vasallo-1’, ‘Larsen’, and ‘Aruz’ had the highest 7-year mean for number and the yield of fruit averaging 4479 fruit/ha and 1245 kg·ha−1, respectively. ‘Timothe’ and ‘Vasallo-1’ significantly out yielded the ‘Prolific’ rootstock seedling. The number of fruit per hectare and corresponding yield obtained in this study were very low probably as the result of wind exposure, the presence of the fungus Pestalotia causing floral necrosis, or both. Scion/rootstock incompatibility was not the cause of the low yield performance of grafted trees. The average individual weight of fruit was 282 g and ranged from 264 to 303 g. Averaged over rootstock seedlings, leaf tissue nutrient concentration did not vary greatly over time. Moreover, tissue nutrient concentration was similar before and after fertilization events.


2021 ◽  
pp. 1-11
Author(s):  
Tekan S. Rana ◽  
Erick D. Smith ◽  
Cain Hickey ◽  
Mark Hoffmann

More than 3000 acres of commercial muscadine (Vitis rotundifolia) vineyards exist in the southeastern United States. The muscadine wine industry is generating an economic impact of $1 billion in North Carolina alone. Muscadines have been cultivated since the 1800s, but muscadine vineyard fertilizer programs, tissue sampling, and nutrient sufficiency ranges continue to be based on anecdotal knowledge. While seasonal changes in tissue nutrient concentration are well documented in bunch grape (Vitis vinifera), questions remain about the seasonal and cultivar-dependent dynamics of muscadine leaf tissue nutrient concentrations. The aim of this study was to assess temporal and cultivar-related differences in tissue nutrient concentration of mature commercially grown muscadines. Leaf tissue nutrient concentration of the muscadine cultivars Carlos and Noble were assessed in three vineyards (Piedmont North Carolina, north Georgia, and south Georgia) at bloom, véraison, and postharvest in 2018 and 2019. Our results show that nitrogen (N), phosphorus (P), and manganese (Mn) were generally above the recommended sufficiency ranges, with calcium increasing over the season—and N, P, and potassium decreasing over the season. ‘Carlos’ had significantly higher levels of N and P, compared with ‘Noble’, while ‘Noble’ showed higher Mn concentration than ‘Carlos’. With this evaluation, we demonstrate the need for a modification in muscadine tissue nutrient sufficiency ranges that are based on cultivar and vine growth stage.


Sign in / Sign up

Export Citation Format

Share Document