scholarly journals Serratia plymuthica MBSA-MJ1 Increases Shoot Growth and Tissue Nutrient Concentration in Containerized Ornamentals Grown Under Low-Nutrient Conditions

2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

High fertilizer rates are often applied to horticulture crop production systems to produce high quality crops with minimal time in production. Much of the nutrients applied in fertilizers are not taken up by the plant and are leached out of the containers during regular irrigation. The application of plant growth promoting rhizobacteria (PGPR) can increase the availability and uptake of essential nutrients by plants, thereby reducing nutrient leaching and environmental contamination. Identification of PGPR can contribute to the formulation of biostimulant products for use in commercial greenhouse production. Here, we have identified Serratia plymuthica MBSA-MJ1 as a PGPR that can promote the growth of containerized horticulture crops grown with low fertilizer inputs. MBSA-MJ1 was applied weekly as a media drench to Petunia×hybrida (petunia), Impatiens walleriana (impatiens), and Viola×wittrockiana (pansy). Plant growth, quality, and tissue nutrient concentration were evaluated 8weeks after transplant. Application of MBSA-MJ1 increased the shoot biomass of all three species and increased the flower number of impatiens. Bacteria application also increased the concentration of certain essential nutrients in the shoots of different plant species. In vitro and genomic characterization identified multiple putative mechanisms that are likely contributing to the strain’s ability to increase the availability and uptake of these nutrients by plants. This work provides insight into the interconnectedness of beneficial PGPR mechanisms and how these bacteria can be utilized as potential biostimulants for sustainable crop production with reduced chemical fertilizer inputs.

2015 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
Moonmoon Nahar Asha ◽  
Atiqur Rahman ◽  
Quazi Forhad Quadir ◽  
Md Shahinur Islam

A laboratory experiment was performed to isolate some native rhizobacteria that could be used as bioinoculants for sustainable crop production. A total of 43 rhizobacteria were isolated from undisturbed plant rhizosphere soils of three different locations of Bangladesh and evaluated their plant growth promoting traits, both direct and indirect. The study has screened out isolates on the basis of their phosphorous solubilization and nitrogen (N) fixation. The phosphate solubilization assay in National Botanical Research Institute of Phosphate (NBRIP) medium revealed that 12 bacterial isolates were able to solubilize tricalcium phosphate and the rhizobacteria M25 showed best performance with a PSI of 3.33 at 5 day. Exactly 47% (20 isolates) of the isolated rhizobacteria were able to grow in N-free Winogradsky’s medium, which is an indication of potential N2-fixers. Among the 20 potential N-fixers, 15 were able to grow within 24 hours of incubation indicating that they are more efficient in Nfixation. The present study successfully isolated and characterized 43 rhizobacteria. Some of these isolated rhizobacteria have potential plant growth promoting traits and are potential plant growth promoting rhizobacteria (PGPR) candidate. Considering all plant growth promoting traits, the isolate F37 was the best followed by M6. However, further experiments are needed to determine the effectiveness of these isolates under in vitro and different field conditions to understand the nature of interaction with the plant and environment.Res. Agric., Livest. Fish.2(1): 1-8, April 2015


2020 ◽  
Vol 8 (9) ◽  
pp. 1290
Author(s):  
Navid Bazghaleh ◽  
Pratibha Prashar ◽  
Sheridan Woo ◽  
Albert Vandenberg

Trichoderma species are opportunistic plant symbionts that are common in the root and rhizosphere ecosystems. Many Trichoderma species may enhance plant growth, nutrient acquisition, and disease resistance, and for these reasons, they are widely used in agriculture as biofertilizers or biocontrol agents. Host plant genotype and other microorganisms, such as root pathogens, may influence the efficacy of Trichoderma inoculants. Aphanomyces euteiches is an important soil-borne oomycete in western Canada that causes root rot in legume crops such as lentil and pea, and there is not yet any significantly resistant varieties or effective treatments available to control the disease. In this study, the composition of root-associated fungal communities and the abundance of Trichoderma species, T. harzianum strain T-22 and T. virens strain G41, was determined in the roots of eight Lens genotypes based on internal transcribed spacer (ITS) Illumina MiSeq paired-end sequencing, both in the presence and the absence of the root rot pathogen Aphanomyces euteiches. Biocontrol effects of T. harzianum on A. euteiches was also examined. Significant genotypic variations were observed in the composition of root-associated fungal communities and the abundance of the different Trichoderma species in the lentil roots. The presence of A. euteiches altered the composition of Trichoderma found associated to the lentil genotypes. Biocontrol of A. euteiches by T. harzianum T22 species was observed in vitro and positive correlations between the abundance of Trichoderma and plant root and shoot biomass were observed in vivo. These findings revealed that lentil genotype and infection by the phytopathogen A. euteiches greatly influenced the colonization of root-associated fungi and the abundance of the Trichoderma species, as well as the effect on plant growth promotion. The multipartite interactions observed among lentil genotypes, Trichoderma species and A. euteiches suggest possibilities to select compatible host-beneficial microbe combinations in lentil breeding programs and to develop application strategies to harness the beneficial effects of Trichoderma inoculants in sustainable crop production systems.


1990 ◽  
Vol 36 (4) ◽  
pp. 265-272 ◽  
Author(s):  
J. Renato de Freitas ◽  
James J. Germida

The association of winter wheat (Triticum aestivum L. cv. Norstar) with root-colonizing bacteria (rhizobacteria) was studied in potted soil experiments in the growth chamber. Thirty-six known bacteria, some of which have been reported to stimulate plant growth, and 75 isolates obtained from the rhizosphere of winter wheat were tested for their effects on plant growth and development in two different soils. Two known bacteria and 12 isolates stimulated growth of winter wheat. Of these, the most effective were nine isolates that significantly (P < 0.01) increased plant height, root and shoot biomass, and number of tillers. The plant growth promoting effects of isolates were different in the two soils. Three of these strains were tentatively classified as Pseudomonas aeruginosa, and two each as Pseudomonas cepacia, Pseudomonas fluorescens, and Pseudomonas putida. Some isolates induced significant increases in seedling emergence rates and (or) demonstrated antagonism in vitro against Rhizoctonia solani and Leptosphaeria maculans. These results demonstrate the potential use of plant growth promoting rhizobacteria as inoculants for winter wheat. Key words: pseudomonads, plant growth promoting rhizobacteria, winter wheat, rhizosphere, bacterial inoculants.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2021 ◽  
Vol 22 (10) ◽  
pp. 5162
Author(s):  
Leangsrun Chea ◽  
Birgit Pfeiffer ◽  
Dominik Schneider ◽  
Rolf Daniel ◽  
Elke Pawelzik ◽  
...  

Low phosphorus (P) availability is a major limiting factor for potatoes. P fertilizer is applied to enhance P availability; however, it may become toxic when plants accumulate at high concentrations. Therefore, it is necessary to gain more knowledge of the morphological and biochemical processes associated with P deficiency and toxicity for potatoes, as well as to explore an alternative approach to ameliorate the P deficiency condition. A comprehensive study was conducted (I) to assess plant morphology, mineral allocation, and metabolites of potatoes in response to P deficiency and toxicity; and (II) to evaluate the potency of plant growth-promoting rhizobacteria (PGPR) in improving plant biomass, P uptake, and metabolites at low P levels. The results revealed a reduction in plant height and biomass 60–80% under P deficiency compared to P optimum. P deficiency and toxicity conditions also altered the mineral concentration and allocation in plants due to nutrient imbalance. The stress induced by both P deficiency and toxicity was evident from an accumulation of proline and total free amino acids in young leaves and roots. Furthermore, root metabolite profiling revealed that P deficiency reduced sugars by 50–80% and organic acids by 20–90%, but increased amino acids by 1.5–14.8 times. However, the effect of P toxicity on metabolic changes in roots was less pronounced. Under P deficiency, PGPR significantly improved the root and shoot biomass, total root length, and root surface area by 32–45%. This finding suggests the potency of PGPR inoculation to increase potato plant tolerance under P deficiency.


2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.


Sign in / Sign up

Export Citation Format

Share Document