The effect of different N rates on Cd speciation of Cd-contaminated soil with oilseed rape

2017 ◽  
Vol 40 (19) ◽  
pp. 2680-2690
Author(s):  
Shiqi Fan ◽  
Yulong Zhang
Chemosphere ◽  
2020 ◽  
Vol 259 ◽  
pp. 127404
Author(s):  
Suihua Huang ◽  
Gangshun Rao ◽  
Umair Ashraf ◽  
Longxin He ◽  
Zezhu Zhang ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 884
Author(s):  
Shi Li ◽  
Sixiu Le ◽  
Xin Wang ◽  
Jiuyuan Bai ◽  
Rui Wang ◽  
...  

Cadmium (Cd) pollution in soil is becoming increasingly serious due to anthropogenic activities, which not only poses a threat to the ecological environment, but also causes serious damage to human health via the biological chain. Consequently, special concerns should be paid to develop and combine multiple remediation strategies. In this study, different subspecies of oilseed rape, Brassica campestris, Brassica napus and Brassica juncea were applied, combined with three organic acids, acetic acid, oxalic acid and citric acid, in a simulated Cd-contaminated soil. Various physiological and biochemical indexes were monitored in both plant seedling, growth period and mature stage. The results showed that organic acids significantly promoted the growth of Brassica campestris and Brassica juncea under Cd stress. The photosynthesis and antioxidant enzyme activities in Brassica campestris and Brassica juncea were induced at seedling stage, while that in Brassica napus were suppressed and disturbed. The enrichment of Cd in oilseed rape was also obviously increased. Brassica juncea contained relatively high resistance and Cd content in plant but little Cd in seed. Among the three acids, oxalic acids exhibited the most efficient promoting effect on the accumulation of Cd by oilseed rape. Here, a comprehensive study on the combined effects of oilseed rape and organic acids on Cd contaminated soil showed that Brassica juncea and oxalic acid possessed the best effect on phytoremediation of Cd contaminated soil. Our study provides an optimal way of co-utilizing oilseed rape and organic acid in phytoremediation of Cd contaminated soil.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1701 ◽  
Author(s):  
Witold Grzebisz ◽  
Remigiusz Łukowiak ◽  
Karol Kotnis

Application of nitrogen (N) in contrastive chemical form changes availability of soil nutrients, affecting crop response. This hypothesis was evaluated based on field experiments conducted in 2015/16 and 2016/2017. The experiment consisted of three nitrogen fertilization systems: mineral-ammonium nitrate (AN) (M-NFS), organic-digestate (O-NFS), 2/3 digestate + 1/3 AN (OM-NFS), and N rates: 0, 80, 120, 160; 240 kg ha−1. The content of nitrogen nitrate (N-NO3) and available phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) were determined at rosette, onset of flowering, and maturity of winter oilseed rape (WOSR) growth from three soil layers: 0.0–0.3, 0.3–0.6, 0.6–0.9 m. The optimum N rates were: 139, 171 and 210 kg ha−1 for the maximum yield of 3.616, 3.887, 4.195 t ha−1, for M-NFS, O-NFS, OM-NFS. The N-NO3 content at rosette of 150 kg ha−1 and its decrease to 48 kg ha−1 at the onset of flowering was the prerequisite of high yield. The key factor limiting yield in the M-NFS was the shortage of Ca, Mg, O-NFS—shortage of N-NO3. Plants in the OM-NFS were well-balanced due to a positive impact of the subsoil Mg and Ca on the N-NO3 content and productivity. The rosette stage was revealed as the cardinal for the correction of WOSR N nutritional status.


2016 ◽  
Vol 67 (4) ◽  
pp. 439 ◽  
Author(s):  
Hannes Hegewald ◽  
Barbara Koblenz ◽  
Monika Wensch-Dorendorf ◽  
Olaf Christen

A rotational field experiment was established in the year 2002 at the experimental farm Etzdorf in the Hercynian dry region of central Germany. Since 2005 field measured datasets were used to determine the effect of different preceding crop combinations and different nitrogen (N) fertilisation treatments on the seed yield, oil content, oil yield and N-use efficiency of oilseed rape (Brassica napus L.). The preceding crop combinations compared were winter wheat (Triticum aestivum L.)-winter wheat (WW), WW-oilseed rape (OSR), OSR-OSR and an OSR monoculture. In addition to the preceding crop combination, N fertiliser treatments with either 120 kg N ha–1 or 180 kg N ha–1 were established in the year 2013. Overall the results demonstrated that seed yield, oil yield and N-use efficiency all declined with an increased cropping intensity for the period 2005–2012. Higher N rates in the 2013–2014 seasons increased seed yield and oil yield when OSR followed WW-WW pre-crops. OSR monoculture had lowest yield independent of applied N. Seed yield declined from 4.61 t ha–1 (OSR following WW-WW) to 4.28 t ha–1 in the OSR monoculture with 120 kg N ha–1, and from 4.81 t ha–1 (following WW-WW) to 4.42 t ha–1 in the OSR monoculture with 180 kg N ha–1. Higher N rates generally reduced N-use efficiency, with highest N-efficiency for WW-WW-OSR (38.4 kg kg–1), and lowest for continuous OSR receiving 180 kg N ha–1 (24.5 kg kg–1). These results emphasise the importance of crop rotation to maintain seed yield and oil yield of oilseed rape, and to maximise the response to applied N. A reduced N rate increased N-use efficiency and reduced the risk of high N surpluses without a significant/equivalent decrease of the seed yield when the rotation was optimised.


Sign in / Sign up

Export Citation Format

Share Document