Ozonated Nutrient Solution Treatment as an Alternative Method for the Control of Root-Knot Nematodes in Soilless Cultivation

2019 ◽  
Vol 42 (4) ◽  
pp. 371-376
Author(s):  
Liang Zheng ◽  
Qi Yang ◽  
Weitang Song
2021 ◽  
Author(s):  
Dimitris Papadimitriou ◽  
Ioannis Daliakopoulos ◽  
Thrassyvoulos Manios ◽  
Dimitrios Savvas

<p>Introducing edible salt-tolerant plant species to professional cultivation is a concept compatible with the need of improving the resilience of food systems to shocks and stresses, which is  required to tackle eminent global challenges, such as water scarcity and climate change (Cuevas et al., 2019). Hydroponic systems can contribute to substantial savings of water, nutrients, and space, while increasing yield and produce quality (Savvas and Gruda, 2018). In the current study, we examined the feasibility of cultivating the wild edible green <em>Scolymus hispanicus L</em>. under moderate levels of salinity in a soilless cultivation system. The experiment was installed in October 2019, in an unheated saddle roof double-span greenhouse, as a completely randomized block design with 4 treatments and 4 blocks per treatment (Papadimitriou et al., 2020). Treatments were formed by supplying a standard nutrient solution (NS) with four NaCl concentrations (0.5, 5.0, 10.0, and 15.0 mM), resulting in electrical conductivities of 2.2, 2.8, 3.2, and 3.8 dS m<sup>-1</sup>, respectively. Measurements of chlorophyll fluorescence (Fv/Fm) and relative chlorophyll levels (SPAD), which were performed to assess the photosynthetic capacity of leaves, did not indicate any significant differences between the non-salinized control (0.5 mM NaCl) and the salinity treatments (5.0, 10.0, and 15.0 mM NaCl), until 60 days after seedling transplanting (DAT). However, by 90 DAT, salinity levels of 10.0 and 15.0 mM significantly reduced leaf chlorophyll levels, as indicated by the SPAD indices, compared to 5.0 and 0.5 mM NaCl in the supplied NS. Moreover, by 90 DAT, the chlorophyll fluorescence (Fv/Fm) was significantly reduced at the salinity level of 15.0 mM compared to 0.5 and 5.0 mM. Nevertheless, no salinity treatment had a significant impact on leaf fresh weight, root fresh weight, rosette diameter, number of leaves and post-harvest storability in plants harvested 90 and 120 DAT, compared to the control. Based on these results, <em>S. hispanicus L</em>. exhibits a considerable resilience to moderate salinity and can be considered a promising candidate plant for introduction in hydroponic cropping systems.</p><p><strong>Acknowledgements</strong></p><p>The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 240).</p><p><strong>References</strong></p><p>Cuevas, J., Daliakopoulos, I.N., del Moral, F., Hueso, J.J., Tsanis, I.K., 2019. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 9, 295. https://doi.org/10.3390/agronomy9060295</p><p>Papadimitriou, D., Kontaxakis, E., Daliakopoulos, I., Manios, T., Savvas, D., 2020. Effect of N:K Ratio and Electrical Conductivity of Nutrient Solution on Growth and Yield of Hydroponically Grown Golden Thistle (Scolymus hispanicus L.). Proceedings 30, 87.https://doi.org/10.3390/proceedings2019030087</p><p>Savvas, D., Gruda, N., 2018. Application of soilless culture technologies in the modern greenhouse industry - A review. Europ. J. Hort. Sci. 83, 280-293.</p>


2021 ◽  
Vol 11 ◽  
Author(s):  
Annika Nerlich ◽  
Dennis Dannehl

In agriculture, the increasing scarcity of arable land and the increase in extreme weather conditions has led to a large proportion of crops, especially vegetables, being cultivated in protected soilless cultivation methods to provide people with sufficient and high-quality food. Rockwool has been used for decades as a soil substitute in soilless cultivation. Since rockwool is not biodegradable, it is disposed in landfills after its use, which nowadays leads to ecological concerns and drives the search for alternative substrates, especially organic materials. The objectives of this study were to investigate the effects of organic materials (wood chips, sphagnum moss, and hemp fibers) in relation to rockwool substrate on plant growth and quality of lettuce as a result of physical and chemical properties of the mentioned substrates. We were able to show that sphagnum moss is a suitable substitute substrate for lettuce cultivation, contrary to hemp. All investigated substrates presented good physical properties, but differed in their decomposition stability. Within 8 weeks, 30% of the hemp and about 10% of both sphagnum and wood materials were degraded. It was concluded that the increased microbiological activity immobilized nitrogen and led to oxygen deficiency in the rhizosphere and resulted in increased phenolic acid contents in lettuce but poor yield on hemp. Sphagnum caused a pH decrease and accumulation of ammonium in the nutrient solution and allowed the highest yield for lettuce at moderate phenolic acid contents. Low yields were obtained on wood, which could possibly be increased by optimized nutrient solution, so that wood as an alternative to rockwool was not excluded. By applying used organic substrates as soil additives on arable land, the nutrients accumulated in it might fertilize the open field crops, thus saving mineral fertilizers. This, together with the avoidance of waste, would contribute to a greater sustainability.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1379 ◽  
Author(s):  
Nicola Michelon ◽  
Giuseppina Pennisi ◽  
Nang Ohn Myint ◽  
Giacomo Dall’Olio ◽  
Lucrecia Pacheco Batista ◽  
...  

Simplified soilless cultivation (SSC) systems have globally spread as growing solutions for low fertility soil regions, low availability of water irrigation, small areas and polluted environments. In the present study, four independent experiments were conducted for assessing the applicability of SSC in the northeast of Brazil (NE-Brazil) and the central dry zone of Myanmar (CDZ-Myanmar). In the first two experiments, the potentiality for lettuce crop production and water use efficiency (WUE) in an SSC system compared to traditional on-soil cultivation was addressed. Then, the definition of how main crop features (cultivar, nutrient solution concentration, system orientation and crop position) within the SSC system affect productivity was evidenced. The adoption of SSC improved yield (+35% and +72%, in NE-Brazil and CDZ-Myanmar) and WUE (7.7 and 2.7 times higher, in NE-Brazil and CDZ-Myanmar) as compared to traditional on-soil cultivation. In NE-Brazil, an eastern orientation of the system enabled achievement of higher yield for some selected lettuce cultivars. Furthermore, in both the considered contexts, a lower concentration of the nutrient solution (1.2 vs. 1.8 dS m−1) and an upper plant position within the SSC system enabled achievement of higher yield and WUE. The experiments validate the applicability of SSC technologies for lettuce cultivation in tropical areas.


2009 ◽  
pp. 999-1002 ◽  
Author(s):  
A. San Bautista ◽  
S. López-Galarza ◽  
A. Martínez ◽  
J.V. Maroto ◽  
B. Pascual

2013 ◽  
Vol 35 (2) ◽  
pp. 616-624 ◽  
Author(s):  
Layara Alexandre Bessa ◽  
Fabiano Guimarães Silva ◽  
Marialva Alvarenga Moreira ◽  
João Paulo Ribeiro Teodoro ◽  
Frederico Antônio Loureiro Soares

Hancornia speciosa Gomes (Mangaba tree) is a fruit tree belonging to the Apocynaceae family and is native to Brazil. The production of seedlings of this species is limited by a lack of technical and nutritional expertise. To address this deficiency, this study aimed to characterize the visual symptoms of micronutrient deficiency and to assess growth and leaf nutrient accumulation in H. speciosa seedlings supplied with nutrient solutions that lack individual micronutrients. H. speciosa plants were grown in nutrient solution in a greenhouse according to a randomized block design, with four replicates. The treatments consisted of a group receiving complete nutrient solution and groups treated with a nutrient solution lacking one of the following micronutrients: boron (B), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), and molybdenum (Mo). The visual symptoms of nutrient deficiency were generally easy to characterize. Dry matter production was affected by the omission of micronutrients, and the treatment lacking Fe most limited the stem length, stem diameter, root length, and number of leaves in H. speciosa seedlings as well as the dry weight of leaves, the total dry weight, and the relative growth in H. speciosa plants. The micronutrient contents of H. speciosa leaves from plants receiving the complete nutrient solution treatment were, in decreasing order, Fe>Mn>Cu>Zn>B.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1311 ◽  
Author(s):  
María del Carmen Salas ◽  
José Luis Montero ◽  
José Gregorio Diaz ◽  
Francesca Berti ◽  
María F. Quintero ◽  
...  

Saffron is traditionally cultivated in soil as a semi-perennial crop, although the feasibility of crop production is today constrained in Europe due to both agronomic and socioeconomic factors. Accordingly, interest has been increasing concerning its possible cultivation within protected environments through adoption of soilless cultivation technologies. The aim of the present study was to optimize nutrient solution features in the soilless cultivation of saffron corms. The trial was conducted in a greenhouse at Almeria University. Saffron was grown in 15-L pots filled with perlite. Three fertigation treatments were used, obtained by a linear increase of all nutrients of one standard in order to reach an electrical conductivity (EC) of 2.0 (control, EC2.0), 2.5 (EC2.5) and 3.0 (EC3.0) dS·m−1. Measurements included determinations of shoot length, corm yield, as well as nutrient uptake from the nutrient solution and concentrations within plant tissues. The nutrient solution with the highest EC (EC3.0) allowed obtaining three to five times more corms above 25-mm diameter. The increasing EC had a significant effect on the increase of macronutrient uptake, except for NO3− and NH4+ and resulted in a general increase of nutrient concentrations in tissues, such as corms and roots. Both macronutrient uptake and accumulation in plant tissues were highest under EC3.0. Nutrient uptake was significantly correlated with production of larger corms due to higher horizontal diameter.


Sign in / Sign up

Export Citation Format

Share Document