scholarly journals Soilless Cultivation: Dynamically Changing Chemical Properties and Physical Conditions of Organic Substrates Influence the Plant Phenotype of Lettuce

2021 ◽  
Vol 11 ◽  
Author(s):  
Annika Nerlich ◽  
Dennis Dannehl

In agriculture, the increasing scarcity of arable land and the increase in extreme weather conditions has led to a large proportion of crops, especially vegetables, being cultivated in protected soilless cultivation methods to provide people with sufficient and high-quality food. Rockwool has been used for decades as a soil substitute in soilless cultivation. Since rockwool is not biodegradable, it is disposed in landfills after its use, which nowadays leads to ecological concerns and drives the search for alternative substrates, especially organic materials. The objectives of this study were to investigate the effects of organic materials (wood chips, sphagnum moss, and hemp fibers) in relation to rockwool substrate on plant growth and quality of lettuce as a result of physical and chemical properties of the mentioned substrates. We were able to show that sphagnum moss is a suitable substitute substrate for lettuce cultivation, contrary to hemp. All investigated substrates presented good physical properties, but differed in their decomposition stability. Within 8 weeks, 30% of the hemp and about 10% of both sphagnum and wood materials were degraded. It was concluded that the increased microbiological activity immobilized nitrogen and led to oxygen deficiency in the rhizosphere and resulted in increased phenolic acid contents in lettuce but poor yield on hemp. Sphagnum caused a pH decrease and accumulation of ammonium in the nutrient solution and allowed the highest yield for lettuce at moderate phenolic acid contents. Low yields were obtained on wood, which could possibly be increased by optimized nutrient solution, so that wood as an alternative to rockwool was not excluded. By applying used organic substrates as soil additives on arable land, the nutrients accumulated in it might fertilize the open field crops, thus saving mineral fertilizers. This, together with the avoidance of waste, would contribute to a greater sustainability.

Author(s):  
Patrizia Zaccheo ◽  
◽  
Laura Crippa ◽  
Francesco Giuffrida ◽  
◽  
...  

Chemical properties exert a considerable influence on the behavior of growing media, particularly in regulating the composition of the nutrient solution. This effect depends on the nature of components: mineral growing media are chemically inert and weakly affect the nutrient solution only in the first days of cultivation. Organic growing media constantly release and immobilize elements, playing a key role in controlling plant availability of nutrient and toxic ions. The most important chemical characteristics of growing media are cation exchange capacity (CEC), salinity, and acidity. These can be changed using amendments. The chapter examines these chemical properties of growing media and growing media components, describes how they can influence soilless cultivation and analyzes latest trends in their management. Finally, a case study on the modification of pH, salinity and nutrient content during storage of two growing media is reported.


2012 ◽  
Vol 38 (2) ◽  
pp. 45-53 ◽  
Author(s):  
Tomasz Kleiber

Pollution of the Natural Environment in Intensive Cultures Under GreenhousesThe last two decades have brought a significant modernization in methods of cultivation in greenhouses. Soilless cultures, isolated from soils, have become a common practice, similarly as fertigation (fertilization + irrigation) installations, although most of them are applied in the open system (with no recirculation), where excess nutrient solution is removed straight to soil. This situation was the reason why it was decided to conduct studies, extended over a period of many years, on the estimation of environmental pollution caused by discharged drainage waters containing mineral fertilizers in economically important cultures in Poland (anthurium, tomato, cucumber). On the basis of the chemical composition of drainage waters and amounts of nutrient solution spillway from culture beds data were estimated concerning pollution of the soil medium by the nutrient solution. The level of pollution was dependent on nutrient requirements of crops and the length of the vegetation period. The highest environmental pollution is caused by intensive tomato growing (in kg·month·ha-1): N-NO3(up to 245), K (up to 402), Ca (up to 145) and S-SO4(up to 102). A lesser threat is posed by metal microelements: Fe (up to 2.69), Mn (up to 0.19), Zn (up to 0.52) and Cu (up to 0.09). Lower contamination of the natural environment is generated in cultures with lower nutrient requirements (anthurium) and in the case of culture on organic substrates. With an increase in ecological awareness of producers recirculation systems should be implemented in the production practice, in which drainage waters do not migrate directly to soil, but are repeatedly used to feed crops.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Mazhar H. Tunio ◽  
Jianmin Gao ◽  
Imran A. Lakhiar ◽  
Kashif A. Solangi ◽  
Waqar A. Qureshi ◽  
...  

The atomized nutrient solution droplet sizes and spraying intervals can impact the chemical properties of the nutrient solution, biomass yield, root-to-shoot ratio and nutrient uptake of aeroponically cultivated plants. In this study, four different nozzles having droplet sizes N1 = 11.24, N2 = 26.35, N3 = 17.38 and N4 = 4.89 µm were selected and misted at three nutrient solution spraying intervals of 30, 45 and 60 min, with a 5 min spraying time. The measured parameters were power of hydrogen (pH) and electrical conductivity (EC) values of the nutrient solution, shoot and root growth, ratio of roots to shoots (fresh and dry), biomass yield and nutrient uptake. The results indicated that the N1 presented significantly lower changes in chemical properties than those of N2, N3 and N4, resulting in stable lateral root growth and increased biomass yield. Also, the root-to-shoot ratio significantly increased with increasing spraying interval using N1 and N4 nozzles. The N1 nozzle also revealed a significant effect on the phosphorous, potassium and magnesium uptake by the plants misted at proposed nutrient solution spraying intervals. However, the ultrasonic nozzle showed a nonsignificant effect on all measured parameters with respect to spraying intervals. In the last, this research experiment validates the applicability of air-assisted nozzle (N1) misting at a 30-min spraying interval and 5 min of spraying time for the cultivation of butter-head lettuce in aeroponic systems.


2014 ◽  
Vol 18 (2) ◽  
pp. 210-216 ◽  
Author(s):  
Juarez R. Cabral ◽  
Paulo S. L. de Freitas ◽  
Roberto Rezende ◽  
Antonio S. Muniz ◽  
Altair Bertonha

Swine wastewater (SW) has characteristics that allow its disposal in the soil as a fertilizer. This is an alternative in order not to accumulate this material in the farm as well as it provides savings with mineral fertilizers. The aim of this study was to evaluate the effect of applying swine wastewater on the chemical properties of a distrophic Red Latosol for two seasons. The experiment was carried out under field conditions with treatments defined as T0 = 0 (control), T1 = 150, T2 = 300, T3 = 450, T4 = 600, T5 = 750 m3 ha-1 of SW applied during the crop cycle of elephant grass. SW application contributed to the increase of magnesium and phosphorus and the reduction of soil aluminum in the first season. As for the second season when compared to the first one, there were reductions in K, Ca, and P concentrations. Hence applications of SW did not contribute to the increase in concentration of elements in the soil.


2021 ◽  
Author(s):  
Dimitris Papadimitriou ◽  
Ioannis Daliakopoulos ◽  
Thrassyvoulos Manios ◽  
Dimitrios Savvas

<p>Introducing edible salt-tolerant plant species to professional cultivation is a concept compatible with the need of improving the resilience of food systems to shocks and stresses, which is  required to tackle eminent global challenges, such as water scarcity and climate change (Cuevas et al., 2019). Hydroponic systems can contribute to substantial savings of water, nutrients, and space, while increasing yield and produce quality (Savvas and Gruda, 2018). In the current study, we examined the feasibility of cultivating the wild edible green <em>Scolymus hispanicus L</em>. under moderate levels of salinity in a soilless cultivation system. The experiment was installed in October 2019, in an unheated saddle roof double-span greenhouse, as a completely randomized block design with 4 treatments and 4 blocks per treatment (Papadimitriou et al., 2020). Treatments were formed by supplying a standard nutrient solution (NS) with four NaCl concentrations (0.5, 5.0, 10.0, and 15.0 mM), resulting in electrical conductivities of 2.2, 2.8, 3.2, and 3.8 dS m<sup>-1</sup>, respectively. Measurements of chlorophyll fluorescence (Fv/Fm) and relative chlorophyll levels (SPAD), which were performed to assess the photosynthetic capacity of leaves, did not indicate any significant differences between the non-salinized control (0.5 mM NaCl) and the salinity treatments (5.0, 10.0, and 15.0 mM NaCl), until 60 days after seedling transplanting (DAT). However, by 90 DAT, salinity levels of 10.0 and 15.0 mM significantly reduced leaf chlorophyll levels, as indicated by the SPAD indices, compared to 5.0 and 0.5 mM NaCl in the supplied NS. Moreover, by 90 DAT, the chlorophyll fluorescence (Fv/Fm) was significantly reduced at the salinity level of 15.0 mM compared to 0.5 and 5.0 mM. Nevertheless, no salinity treatment had a significant impact on leaf fresh weight, root fresh weight, rosette diameter, number of leaves and post-harvest storability in plants harvested 90 and 120 DAT, compared to the control. Based on these results, <em>S. hispanicus L</em>. exhibits a considerable resilience to moderate salinity and can be considered a promising candidate plant for introduction in hydroponic cropping systems.</p><p><strong>Acknowledgements</strong></p><p>The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 240).</p><p><strong>References</strong></p><p>Cuevas, J., Daliakopoulos, I.N., del Moral, F., Hueso, J.J., Tsanis, I.K., 2019. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 9, 295. https://doi.org/10.3390/agronomy9060295</p><p>Papadimitriou, D., Kontaxakis, E., Daliakopoulos, I., Manios, T., Savvas, D., 2020. Effect of N:K Ratio and Electrical Conductivity of Nutrient Solution on Growth and Yield of Hydroponically Grown Golden Thistle (Scolymus hispanicus L.). Proceedings 30, 87.https://doi.org/10.3390/proceedings2019030087</p><p>Savvas, D., Gruda, N., 2018. Application of soilless culture technologies in the modern greenhouse industry - A review. Europ. J. Hort. Sci. 83, 280-293.</p>


2020 ◽  
Vol 15 (No. 4) ◽  
pp. 228-236
Author(s):  
Eva Horáková ◽  
Lubica Pospíšilová ◽  
Vitězslav Vlček ◽  
Ladislav Menšík

Increasing the soil productivity is challenged by the increasing biotic threat to plants and microorganisms, by the resistance to agrochemicals, and by the declining soil health. Soil management strategy is, therefore, aimed at erosion prevention and the minimisation of soil organic matter losses. A key factor in an agroecosystem is the appropriate biological stability. It is essential not only at present, but also for further sustainable agriculture. This study was based on the hypothesis that afforestation and conversion from arable land to permanent grassland improves the organic matter status and biological stability in the agroecosystem. The experiment was conducted from 2014 to 2018 in the Uhřice bio-corridor (Kroměříž region, the Czech Republic). Haplic Luvisol has been investigated for its basic biological and chemical properties after the arable land was converted to a natural vegetation system. The afforested segment (F), permanent grassland segment (G), and arable land segment (A) have been sampled in the upper soil horizon (0–0.30 m). Standard analytical methods were applied for the determination of the basic soil properties. A principal component analysis and factor analysis were used for interpreting the connection between the parameters of the soil organic carbon, the humic substances, the humic acids, and the fulvic acids, the agrochemical properties of the soil (the pH, the content of the nitrogen, phosphorus and potassium, etc.), and the soil biological properties (basal soil respiration (BSR), the ratios of the N/BSR, NG/BSR, etc.). After five years of investigation, the differences in the studied parameters were evident. The factor analysis and multivariate exploratory techniques showed that the soil properties were grouped based on the management into three different categories – F, G and A. The different land use directly influenced the quality and stability of the humic substances, basal soil respiration, and carbon and nitrogen utilisation. In comparison to the arable land, the forest and grassland were considered to have a higher accumulation potential of carbon and nitrogen. A negative correlation between the soil basal respiration (r = –0.95); total nitrogen (r = –0.93); total organic carbon (C<sub>ox</sub>) content (r = –0.82); and partial Ca (r = –0.82) was found. A positive correlation (r = 0.80) between the humic substances (C-HS) and soil reaction (pH) was determined.


2016 ◽  
Vol 67 (4) ◽  
pp. 163-172 ◽  
Author(s):  
Renata Knap ◽  
Janina Kaniuczak ◽  
Edmund Hajduk ◽  
Adam Szewczyk

Abstract The aim of the study was to determine some physicochemical and chemical properties of post-mining soils reclaimed in different directions, after completed sulfur exploitation by means of the borehole (Frash) method. The study was conducted in 2013 in the former Sulfur Mine „Jeziórko” located on the Tarnobrzeg Plain between Tarnobrzeg and Stalowa Wola cities (Podkarpackie Voivodeship, south Poland). It covered an area of land reclaimed as the arable or forest land. The most important problems connected with sulfur exploitation was the occurrence of a layer of solid sulfur which was previously removed. During the reclamation process, embankments and excavations were leveled through replenishing large amounts of ground, post-flotation lime, mineral fertilizers, and sewage sludge. Moreover, studies upon degraded and non-reclaimed area (by 2013) were also carried out. Examined land was characterized by granulometric composition of sands, loamy sands, and sandy loams. Re-leveling of degraded land using post-flotation lime contributed to lower levels of acidification of reclaimed soil surface. The highest contents of organic carbon and total nitrogen were found in the surface layers of the soils studied. Content of available potassium ranged from very low to average. The soils were characterized by a high content of available magnesium in the surface layers of the profiles (maximum 71.8 mg·kg−1 in soil reclaimed as forest land), while below the Mg content was usually low. Contents of individual exchangeable cations could be lined up in a following decreasing sequence: Ca2+>Na+>K+>Mg2+ Referring to the topsoil, reclaimed soils were characterized by more favorable properties (pH close to neutral, lower acidity, higher sorption capacity, higher organic carbon, total nitrogen, and available forms of phosphorus, potassium, and magnesium concentrations) as compared to non-reclaimed soil.


2020 ◽  
Vol 29 (12) ◽  
pp. 1239-1248
Author(s):  
Minjae Kong ◽  
Philgyun An ◽  
Junga Jung ◽  
Chorong Lee ◽  
Sangmin Lee ◽  
...  

2017 ◽  
Vol 37 (11) ◽  
Author(s):  
李培培 LI Peipei ◽  
汪强 WANG Qiang ◽  
文倩 WEN Qian ◽  
李慧 LI Hui ◽  
吴传发 WU Chuanfa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document