Experimental investigation on plugging and transport characteristics of Pore-Scale microspheres in heterogeneous porous media for enhanced oil recovery

Author(s):  
Dai-jun Du ◽  
Wan-fen Pu ◽  
Fayang Jin ◽  
Dong-Dong Hou ◽  
Le Shi
Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3732 ◽  
Author(s):  
Yaohao Guo ◽  
Lei Zhang ◽  
Guangpu Zhu ◽  
Jun Yao ◽  
Hai Sun ◽  
...  

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yafei Liu ◽  
Jingwen Yang ◽  
Tianjiang Wu ◽  
Yanhong Zhao ◽  
Desheng Zhou ◽  
...  

Reservoir heterogeneity is regarded as one of the main reasons leading to low oil recovery for both conventional and unconventional reservoirs. High-permeability layers or fractures could result in ineffective water or gas injection and generate nonuniform profile. Polymer microspheres have been widely applied for the conformance control to overcome the bypass of injected fluids and improve the sweep efficiency. For the purpose of examining the plugging performance of submicron-sized microspheres in high-permeability porous media, systematic investigations were implemented incorporating macroscale blocking rate tests using core samples and pore-scale water migration analysis via nuclear magnetic resonance (NMR). Experimental results indicate that microsphere particle size dominates the plugging performance among three studied factors and core permeability has the least influence on the plugging performance. Subsequently, microsphere flooding was conducted to investigate its oil recovery capability. Different oil recovery behaviors were observed for cores with different permeability. For cores with lower permeability, oil recovery increased stepwise with microsphere injection whereas for higher permeability cores oil recovery rapidly increased and reached a plateau. This experimental work provides a better understanding on the plugging behavior of microspheres and could be employed as a reference for screening and optimizing the microsphere flooding process for profile control in heterogeneous reservoirs.


2021 ◽  
Author(s):  
Qichao Lv ◽  
Tongke Zhou ◽  
Xing Zhang ◽  
Xinshu Guo ◽  
Zhaoxia Dong

Abstract CO2 foams have been used for a long time for enhanced oil recovery (EOR) and carbon capture, utilization, and storage. Note that conventional CO2 foam focuses on mobility control and storage of bare CO2. However, this technology has suffered from low storage efficiency and EOR because of foam instability. In this study, the geological storage of CO2 and coal fly ash (CFA) using Pickering foam for EOR was explored. The aim is to obtain an inexpensive method for EOR and storage of greenhouse gases and atmospheric pollutants. The Pickering foam was prepared using Waring blender method. The experiments were conducted to evaluate CO2/liquid interface enhancement by measuring the interfacial tension and interfacial viscoelastic modulus. As per the heterogeneous sandpack flooding experiments, the profile control capacity and the performance of oil displacement using CO2 foam enhanced by CFA were investigated. The amount of storage from dynamic aspects of CO2 and CFA was measured to demonstrate the storage law. The stability of aqueous foam was improved significantly after the addition of CFA. The half-life time of foam stabilized by CFA particles increased by more than about 11 times than that of foam without CFA particles. The interfacial dilatational viscoelastic modulus of CO2/foaming solution increased with CFA particle concentration increasing, indicating the interface transformed from liquid-like to solid-like. Flooding experiments in heterogeneous porous media showed that more produced fluid was displaced from the relatively low-permeability sandpack after the injection of CO2 foam with CFA. The oil recovery by CFA stabilized foam was improved by ~28.3% than that of foam without CFA particles. And the sequestration of CO2 in heterogeneous porous media was enhanced with the addition of CFA to CO2 foam, and the CFA stabilized foam displayed a strong resistance to water erosion for the storage of CO2 and CFA. This work introduces a win–win method for EOR and storage of CO2 and atmospheric pollutant particles. CFA from coal combustion was used as an enhancer for CO2 foam, which improved the interfacial dilatational viscoelasticity of foam film and the dynamic storage of CO2. Furthermore, the storage of CO2 and CFA contributed to improvement in sweep efficiency, and thus EOR.


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document