scholarly journals Design-based random permutation models with auxiliary information

Statistics ◽  
2012 ◽  
Vol 46 (5) ◽  
pp. 663-671
Author(s):  
Wenjun Li ◽  
Edward J. Stanek ◽  
Julio M. Singer
1984 ◽  
Vol 33 (1-2) ◽  
pp. 93-104 ◽  
Author(s):  
Parimal Mukhopadhyay

Considering certain generalised random permutation models we have derived optimal estimators of finite population variance within a general class of quadratic estimators. The class of non-negative unbiased polynomial estimators of variance has also been examined and an optimal estimator within that class has been derived under this model.


Metrika ◽  
1985 ◽  
Vol 32 (1) ◽  
pp. 339-349 ◽  
Author(s):  
V. R. Padmawar ◽  
P. Mukhopadhyay

Methodology ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 89-99 ◽  
Author(s):  
Leslie Rutkowski ◽  
Yan Zhou

Abstract. Given a consistent interest in comparing achievement across sub-populations in international assessments such as TIMSS, PIRLS, and PISA, it is critical that sub-population achievement is estimated reliably and with sufficient precision. As such, we systematically examine the limitations to current estimation methods used by these programs. Using a simulation study along with empirical results from the 2007 cycle of TIMSS, we show that a combination of missing and misclassified data in the conditioning model induces biases in sub-population achievement estimates, the magnitude and degree to which can be readily explained by data quality. Importantly, estimated biases in sub-population achievement are limited to the conditioning variable with poor-quality data while other sub-population achievement estimates are unaffected. Findings are generally in line with theory on missing and error-prone covariates. The current research adds to a small body of literature that has noted some of the limitations to sub-population estimation.


Author(s):  
Wanlu Zhang ◽  
Qigang Wang ◽  
Mei Li

Background: As artificial intelligence and big data analysis develop rapidly, data privacy, especially patient medical data privacy, is getting more and more attention. Objective: To strengthen the protection of private data while ensuring the model training process, this article introduces a multi-Blockchain-based decentralized collaborative machine learning training method for medical image analysis. In this way, researchers from different medical institutions are able to collaborate to train models without exchanging sensitive patient data. Method: Partial parameter update method is applied to prevent indirect privacy leakage during model propagation. With the peer-to-peer communication in the multi-Blockchain system, a machine learning task can leverage auxiliary information from another similar task in another Blockchain. In addition, after the collaborative training process, personalized models of different medical institutions will be trained. Results: The experimental results show that our method achieves similar performance with the centralized model-training method by collecting data sets of all participants and prevents private data leakage at the same time. Transferring auxiliary information from similar task on another Blockchain has also been proven to effectively accelerate model convergence and improve model accuracy, especially in the scenario of absence of data. Personalization training process further improves model performance. Conclusion: Our approach can effectively help researchers from different organizations to achieve collaborative training without disclosing their private data.


Author(s):  
Zhixian Liu ◽  
Qingfeng Chen ◽  
Wei Lan ◽  
Jiahai Liang ◽  
Yiping Pheobe Chen ◽  
...  

: Traditional network-based computational methods have shown good results in drug analysis and prediction. However, these methods are time consuming and lack universality, and it is difficult to exploit the auxiliary information of nodes and edges. Network embedding provides a promising way for alleviating the above problems by transforming network into a low-dimensional space while preserving network structure and auxiliary information. This thus facilitates the application of machine learning algorithms for subsequent processing. Network embedding has been introduced into drug analysis and prediction in the last few years, and has shown superior performance over traditional methods. However, there is no systematic review of this issue. This article offers a comprehensive survey of the primary network embedding methods and their applications in drug analysis and prediction. The network embedding technologies applied in homogeneous network and heterogeneous network are investigated and compared, including matrix decomposition, random walk, and deep learning. Especially, the Graph neural network (GNN) methods in deep learning are highlighted. Further, the applications of network embedding in drug similarity estimation, drug-target interaction prediction, adverse drug reactions prediction, protein function and therapeutic peptides prediction are discussed. Several future potential research directions are also discussed.


Author(s):  
Roberto Benedetti ◽  
Maria Michela Dickson ◽  
Giuseppe Espa ◽  
Francesco Pantalone ◽  
Federica Piersimoni

AbstractBalanced sampling is a random method for sample selection, the use of which is preferable when auxiliary information is available for all units of a population. However, implementing balanced sampling can be a challenging task, and this is due in part to the computational efforts required and the necessity to respect balancing constraints and inclusion probabilities. In the present paper, a new algorithm for selecting balanced samples is proposed. This method is inspired by simulated annealing algorithms, as a balanced sample selection can be interpreted as an optimization problem. A set of simulation experiments and an example using real data shows the efficiency and the accuracy of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document