Food and water scenarios for the Karkheh River Basin, Iran

2010 ◽  
Vol 35 (4) ◽  
pp. 409-424 ◽  
Author(s):  
Sara Marjanizadeh ◽  
Charlotte de Fraiture ◽  
Willibald Loiskandl
Author(s):  
Maedeh Enayati ◽  
Omid Bozorg-Haddad ◽  
Javad Bazrafshan ◽  
Somayeh Hejabi ◽  
Xuefeng Chu

Abstract This study aims to conduct a thorough investigation to compare the abilities of QM techniques as a bias correction method for the raw outputs from GCM/RCM combinations. The Karkheh River basin in Iran was selected as a case study, due to its diverse topographic features, to test the performances of the bias correction methods under different conditions. The outputs of two GCM/RCM combinations (ICHEC and NOAA-ESM) were acquired from the CORDEX dataset for this study. The results indicated that the performances of the QMs varied, depending on the transformation functions, parameter sets, and topographic conditions. In some cases, the QMs' adjustments even made the GCM/RCM combinations' raw outputs worse. The result of this study suggested that apart from DIST, PTF:scale, and SSPLIN, the rest of the considered QM methods can provide relatively improved results for both rainfall and temperature variables. It should be noted that, according to the results obtained from the diverse topographic conditions of the sub-basins, the empirical quantiles (QUANT) and robust empirical quantiles (RQUANT) methods proved to be excellent options to correct the bias of rainfall data, while all bias correction methods, with the notable exceptions of performed PTF:scale and SSPLIN, performed relatively well for the temperature variable.


CATENA ◽  
2019 ◽  
Vol 182 ◽  
pp. 104128 ◽  
Author(s):  
Bahram Choubin ◽  
Karim Solaimani ◽  
Fereidoun Rezanezhad ◽  
Mahmoud Habibnejad Roshan ◽  
Arash Malekian ◽  
...  

2009 ◽  
Vol 59 (3) ◽  
pp. 264-276 ◽  
Author(s):  
A. S. Qureshi ◽  
T. Oweis ◽  
P. Karimi ◽  
J. Porehemmat

2015 ◽  
Vol 374 ◽  
pp. 144-153 ◽  
Author(s):  
Yasser Ghobadi ◽  
Biswajeet Pradhan ◽  
Gholam Abbas Sayyad ◽  
Keivan Kabiri ◽  
Yashar Falamarzi

2014 ◽  
Vol 76 (1) ◽  
pp. 327-346 ◽  
Author(s):  
Reza Zamani ◽  
Hossein Tabari ◽  
Patrick Willems

2009 ◽  
Vol 24 (3) ◽  
pp. 459-484 ◽  
Author(s):  
L. P. Muthuwatta ◽  
Mobin-ud-Din Ahmad ◽  
M. G. Bos ◽  
T. H. M. Rientjes

Author(s):  
Majid Fereidoon ◽  
Manfred Koch

Accurate estimates of daily rainfall are essential for understanding and modeling the physical processes involved in the interaction between the land surface and the atmosphere. In this study, daily satellite soil moisture observations from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) generated by implementing the standard NASA- algorithm are employed for estimating rainfall, firstly, through the use of recently developed approach, SM2RAIN (Brocca et al., 2013) and, secondly, the nonlinear autoregressive network with exogenous inputs (NARX) neural modelling at five climate stations in the Karkheh river basin (KRB), located in southwest Iran. In the SM2RAIN method, the period 1 January 2003 to 31 December 2005 is used for the calibration of algorithm and the remaining 9 months from 1 January 2006 to 30 September 2006 is used for the validation of the rainfall estimates. In the NARX model, the full study period is split into a training (1 January 2003 to 31 September 2005) and a testing (1 September 2005 to 30 September 2006) stage. For the prediction of the rainfall as the desired target (output), relative soil moisture changes from AMSR-E and measured air temperature time series are chosen as exogenous (external) inputs in NARX. The quality of the estimated rainfall data is evaluated by comparing it with observed rainfall data at the five rain gauges in terms of the correlation coefficient R, the RMSE and the statistical bias. For the SM2RAIN method, R ranges between 0.44 and 0.9 for all stations, whereas for the NARX- model the values are generally slightly lower. Moreover, the values of the bias for each station indicate that although SM2RAIN is likely to underestimate large rainfall intensities, due to the known effect of soil moisture saturation, its biases are somewhat lower than those of NARX. In conclusion, the results of the present study show that with the use of AMSR-E soil moisture products in the physically based SM2RAIN- algorithm as well as in the NARX neural network, rainfall for poorly gauged regions can be fairly predicted.


Sign in / Sign up

Export Citation Format

Share Document