Effects of High-Intensity Exercise Repetition Number During Warm-up on Physiological Responses, Perceptions, Readiness, and Performance

Author(s):  
Naoto Fujii ◽  
Kouta Fujisawa ◽  
Kohei Dobashi ◽  
Yinhang Cao ◽  
Ryoko Matsutake ◽  
...  
2020 ◽  
Vol 128 (1) ◽  
pp. 225-226 ◽  
Author(s):  
Jonathon W. Senefeld ◽  
Chad C. Wiggins ◽  
Michael J. Joyner ◽  
Jacqueline K. Limberg

Author(s):  
Charles S. Urwin ◽  
Rodney J. Snow ◽  
Dominique Condo ◽  
Rhiannon Snipe ◽  
Glenn D. Wadley ◽  
...  

This review aimed to identify factors associated with (a) physiological responses, (b) gastrointestinal (GI) symptoms, and (c) exercise performance following sodium citrate supplementation. A literature search identified 33 articles. Observations of physiological responses and GI symptoms were categorized by dose (< 500, 500, and > 500 mg/kg body mass [BM]) and by timing of postingestion measurements (in minutes). Exercise performance following sodium citrate supplementation was compared with placebo using statistical significance, percentage change, and effect size. Performance observations were categorized by exercise duration (very short < 60 s, short ≥ 60 and ≤ 420 s, and longer > 420 s) and intensity (very high > 100% VO2max and high 90–100% VO2max). Ingestion of 500 mg/kg BM sodium citrate induced blood alkalosis more frequently than < 500 mg/kg BM, and with similar frequency to >500 mg/kg BM. The GI symptoms were minimized when a 500 mg/kg BM dose was ingested in capsules rather than in solution. Significant improvements in performance following sodium citrate supplementation were reported in all observations of short-duration and very high–intensity exercise with a 500 mg/kg BM dose. However, the efficacy of supplementation for short-duration, high-intensity exercise is less clear, given that only 25% of observations reported significant improvements in performance following sodium citrate supplementation. Based on the current literature, the authors recommend ingestion of 500 mg/kg BM sodium citrate in capsules to induce alkalosis and minimize GI symptoms. Supplementation was of most benefit to performance of short-duration exercise of very high intensity; further investigation is required to determine the importance of ingestion duration and timing.


Impact ◽  
2021 ◽  
Vol 2021 (8) ◽  
pp. 55-57
Author(s):  
Toshihiro Takezawa ◽  
Shohei Dobashi ◽  
Katsuhiro Koyama

2021.—Many previous studies have examined hypoxia-induced physiological responses using various conditions, e.g., artificially reduced atmospheric oxygen concentration [normobaric hypoxia (NH) condition] or low barometric pressure at a mountain [hypobaric hypoxia (HH) condition]. However, when comparing the results from these previous studies conducted in artificial NH and HH including real high altitude, we must consider the possibility that environmental factors, such as temperature, humidity, and fraction of inspired carbon dioxide, might affect the physiological responses. Therefore, we examined cardiorespiratory responses and exercise performances during low- to high-intensity exercise at a fixed heart rate (HR) in both NH and HH using a specific chamber where atmospheric oxygen concentration and barometric pressure as well as the abovementioned environmental factors were precisely controlled. Ten well-trained university students (eight males and two females) performed the exercise test consisting of two 20-minute submaximal pedaling at the intensity corresponding to 50% (low) and 70% (high) of their HR reserve, under three conditions [NH (fraction of inspired oxygen, 0.135; barometric pressure, 754 mmHg), HH (fraction of inspired oxygen, 0.209; barometric pressure, 504 mmHg), and normobaric normoxia (NN; fraction of inspired oxygen, 0.209; barometric pressure, 754 mmHg)]. Peripheral oxygen saturation (SpO2) to estimate arterial oxygen saturation and partial pressure of end-tidal carbon dioxide (PETCO2) were monitored throughout the experiment. SpO2, PETCO2, and power output at fixed HRs (i.e., pedaling efficiency) in NH and HH were all significantly lower than those in NN. Moreover, high-intensity exercise in HH induced greater decreases in SpO2 and power output than did high-intensity exercise in NH (NH vs. HH; SpO2, 78.2% - 5.0% vs. 75.1% - 7.1%; power output, 120.7 - 24.9 W vs. 112.4 - 23.2 W, both p < 0.05). However, high-intensity exercise in HH induced greater increases in PETCO2 than did high-intensity exercise in NH (NH vs. HH; 54.2 - 5.9mmHg vs. 57.2 - 3.4 mmHg, p < 0.01). These results suggest that physiological responses and power output at a fixed HR during hypoxic exposure might depend on the method used to generate the hypoxic condition.


2011 ◽  
Vol 21 (4) ◽  
pp. 311-317 ◽  
Author(s):  
David M. Morris ◽  
Rebecca S. Shafer ◽  
Kimberly R. Fairbrother ◽  
Mark W. Woodall

The authors sought to determine the effects of oral lactate consumption on blood bicarbonate (HCO3−) levels, pH levels, and performance during high-intensity exercise on a cycle ergometer. Subjects (N = 11) were trained male and female cyclists. Time to exhaustion (TTE) and total work were measured during high-intensity exercise bouts 80 min after the consumption of 120 mg/kg body mass of lactate (L), an equal volume of placebo (PL), or no treatment (NT). Blood HCO3− increased significantly after ingestion of lactate (p < .05) but was not affected in PL or NT (p > .05). No changes in pH were observed as a result of treatment. TTE and total work during the performance test increased significantly by 17% in L compared with PL and NT (p = .02). No significant differences in TTE and total work were seen between the PL and NT protocols (p = .85). The authors conclude that consuming 120 mg/kg body mass of lactate increases HCO3− levels and increases exercise performance during high-intensity cycling ergometry to exhaustion.


2007 ◽  
Vol 105 (2) ◽  
pp. 523-530 ◽  
Author(s):  
Terry McMorris ◽  
Tom Rayment

The purpose of this study was to examine the effect of one bout and three intermittent bouts of short-duration, high-intensity running on the performance of a sports-specific psychomotor skill. Participants ( N = 13) were male soccer players ( M age 20.5 yr., SD = 2.0) who had been playing semi-professionally for M = 2.1 years, SD = 1.11 and trained twice a week. They undertook a soccer-passing test in three conditions: following rest, following a 100-m sprint and following 3 × 100-m sprints, with 30-sec. rest intervals between sprints. Passing accuracy showed a significant linear deterioration, while number of passes showed a significant quadratic effect. Low to moderate linear regression correlations were found between posttest heart rate and absolute and variable errors on the test. It was concluded that short-duration, high-intensity exercise has a negative effect on accuracy in a sports-specific task that requires both perceptual judgment and motor control.


Sign in / Sign up

Export Citation Format

Share Document