The Role of Familiarity in a Face Classification Task Using Thatcherized Faces

2005 ◽  
Vol 58 (6) ◽  
pp. 1103-1118 ◽  
Author(s):  
Sarah V. Stevenage ◽  
Elizabeth A. Lee ◽  
Nick Donnelly

Two experiments are reported to test the proposition that facial familiarity influences processing on a face classification task. Thatcherization was used to generate distorted versions of familiar and unfamiliar individuals. Using both a 2AFC (which is “odd”?) task to pairs of images (Experiment 1) and an “odd/normal” task to single images (Experiment 2), results were consistent and indicated that familiarity with the target face facilitated the face classification decision. These results accord with the proposal that familiarity influences the early visual processing of faces. Results are evaluated with respect to four theoretical developments of Valentine's (1991) face-space model, and can be accommodated with the two models that assume familiarity to be encoded within a region of face space.

2008 ◽  
Vol 20 (12) ◽  
pp. 2137-2152 ◽  
Author(s):  
Kelly A. Snyder ◽  
Andreas Keil

Habituation refers to a decline in orienting or responding to a repeated stimulus, and can be inferred to reflect learning about the properties of the repeated stimulus when followed by increased orienting to a novel stimulus (i.e., novelty detection). Habituation and novelty detection paradigms have been used for over 40 years to study perceptual and mnemonic processes in the human infant, yet important questions remain about the nature of these processes in infants. The aim of the present study was to examine the neural mechanisms underlying habituation and novelty detection in infants. Specifically, we investigated changes in induced alpha, beta, and gamma activity in 6-month-old infants during repeated presentations of either a face or an object, and examined whether these changes predicted behavioral responses to novelty at test. We found that induced gamma activity over occipital scalp regions decreased with stimulus repetition in the face condition but not in the toy condition, and that greater decreases in the gamma band were associated with enhanced orienting to a novel face at test. The pattern and topography of these findings are consistent with observations of repetition suppression in the occipital–temporal visual processing pathway, and suggest that encoding in infant habituation paradigms may reflect a form of perceptual learning. Implications for the role of repetition suppression in infant habituation and novelty detection are discussed with respect to a biased competition model of visual attention.


2021 ◽  
Author(s):  
Mara De Rosa ◽  
Davide Crepaldi

Research on visual word identification has extensively investigated the role of morphemes, recurrent letter chunks that convey a fairly regular meaning (e.g.,lead-er-ship). Masked priming studies highlighted morpheme identification in complex (e.g., sing-er) and pseudo-complex (corn-er) words, as well as in nonwords (e.g., basket-y). The present study investigated whether such sensitivity to morphemes could be rooted in the visual system sensitivity to statistics of letter (co)occurrence. To this aim, we assessed masked priming as induced by nonword primes obtained by combining a stem (e.g.,bulb) with (i) naturally frequent, derivational suffixes (e.g.,-ment), (ii) non-morphological, equally frequent word endings (e.g.,-idge), and (iii) non-morphological, infrequent word endings (e.g.,-kle). In two additional tasks, we collected interpretability and word-likeness measures for morphologically-structured nonwords, to assess whether priming is modulated by such factors. Results indicate that masked priming is not affected by either the frequency or the morphological status of word endings. Our findings are in line with models of early visual processing based on automatic stem/word extraction, and rule out letter chunk frequency as a main player in the early stages of visual word identification. Nonword interpretability and word-likeness do not affect this pattern.


Author(s):  
Mara De Rosa ◽  
Davide Crepaldi

AbstractResearch on visual word identification has extensively investigated the role of morphemes, recurrent letter chunks that convey a fairly regular meaning (e.g., lead-er-ship). Masked priming studies highlighted morpheme identification in complex (e.g., sing-er) and pseudo-complex (corn-er) words, as well as in nonwords (e.g., basket-y). The present study investigated whether such sensitivity to morphemes could be rooted in the visual system sensitivity to statistics of letter (co)occurrence. To this aim, we assessed masked priming as induced by nonword primes obtained by combining a stem (e.g., bulb) with (i) naturally frequent, derivational suffixes (e.g., -ment), (ii) non-morphological, equally frequent word-endings (e.g., -idge), and (iii) non-morphological, infrequent word-endings (e.g., -kle). In two additional tasks, we collected interpretability and word-likeness measures for morphologically-structured nonwords, to assess whether priming is modulated by such factors. Results indicate that masked priming is not affected by either the frequency or the morphological status of word-endings, a pattern that was replicated in a second experiment including also lexical primes. Our findings are in line with models of early visual processing based on automatic stem/word extraction, and rule out letter chunk frequency as a main player in the early stages of visual word identification. Nonword interpretability and word-likeness do not affect this pattern.


2019 ◽  
Vol 62 (6) ◽  
pp. 1625-1656
Author(s):  
Eliana Mastrantuono ◽  
Michele Burigo ◽  
Isabel R. Rodríguez-Ortiz ◽  
David Saldaña

Purpose The use of sign-supported speech (SSS) in the education of deaf students has been recently discussed in relation to its usefulness with deaf children using cochlear implants. To clarify the benefits of SSS for comprehension, 2 eye-tracking experiments aimed to detect the extent to which signs are actively processed in this mode of communication. Method Participants were 36 deaf adolescents, including cochlear implant users and native deaf signers. Experiment 1 attempted to shift observers' foveal attention to the linguistic source in SSS from which most information is extracted, lip movements or signs, by magnifying the face area, thus modifying lip movements perceptual accessibility (magnified condition), and by constraining the visual field to either the face or the sign through a moving window paradigm (gaze contingent condition). Experiment 2 aimed to explore the reliance on signs in SSS by occasionally producing a mismatch between sign and speech. Participants were required to concentrate upon the orally transmitted message. Results In Experiment 1, analyses revealed a greater number of fixations toward the signs and a reduction in accuracy in the gaze contingent condition across all participants. Fixations toward signs were also increased in the magnified condition. In Experiment 2, results indicated less accuracy in the mismatching condition across all participants. Participants looked more at the sign when it was inconsistent with speech. Conclusions All participants, even those with residual hearing, rely on signs when attending SSS, either peripherally or through overt attention, depending on the perceptual conditions. Supplemental Material https://doi.org/10.23641/asha.8121191


Perception ◽  
10.1068/p5360 ◽  
2006 ◽  
Vol 35 (5) ◽  
pp. 659-670 ◽  
Author(s):  
Roberto Caldara ◽  
Hervé Abdi

Other-race (OR) faces are less accurately recognized than same-race (SR) faces, but faster classified by race. This phenomenon has often been reported as the ‘other-race’ effect (ORE). Valentine (1991 Quarterly Journal of Experimental Psychology A: Human Experimental Psychology43 161–204) proposed a theoretical multidimensional face-space model that explained both of these results, in terms of variations in exemplar density between races. According to this model, SR faces are more widely distributed across the dimensions of the space than OR faces. However, this model does not quantify nor state the dimensions coded within this face space. The aim of the present study was to test the face-space explanation of the ORE with neural network simulations by quantifying its dimensions. We found the predicted density properties of Valentine's framework in the face-projection spaces of the autoassociative memories. This was supported by an interaction for exemplar density between the race of the learned face set and the race of the faces. In addition, the elaborated face representations showed optimal responses for SR but not for OR faces within SR face spaces when explored at the individual level, as gender errors occurred significantly more often in OR than in SR face-space representations. Altogether, our results add further evidence in favor of a statistical exemplar density explanation of the ORE as suggested by Valentine, and question the plausibility of such coding for faces in the framework of recent neuroimaging studies.


1999 ◽  
Vol 22 (3) ◽  
pp. 400-400 ◽  
Author(s):  
Su-Ling Yeh ◽  
I-Ping Chen

Pylyshyn's effort in establishing the cognitive impenetrability of early vision is welcome. However, his view about the role of attention in early vision seems to be oversimplified. The allocation of focal attention manifests its effect among multiple stages in the early vision system, it is not just confined to the input and the output levels.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 274
Author(s):  
Vitaly V. Babenko ◽  
Denis V. Yavna ◽  
Pavel N. Ermakov ◽  
Polina V. Anokhina

Background: Previously obtained results indicate that faces are preattentively detected in the visual scene, and information on facial expression is rapidly extracted at the lower levels of the visual system. At the same time different facial attributes make different contributions in facial expression recognition. However, it is known, among the preattentive mechanisms there are none that would be selective for certain facial features, such as eyes or mouth. The aim of our study was to identify a candidate for the role of such a mechanism. Our assumption was that the most informative areas of the image are those characterized by spatial heterogeneity, particularly with nonlocal contrast changes. These areas may be identified in the human visual system by the second-order visual mechanisms selective to contrast modulations of brightness gradients. Methods: We developed a software program imitating the operation of these mechanisms and finding areas of contrast heterogeneity in the image. Using this program, we extracted areas with maximum, minimum and medium contrast modulation amplitudes from the initial face images, then we used these to make three variants of one and the same face. The faces were demonstrated to the observers along with other objects synthesized the same way. The participants had to identify faces and define facial emotional expressions. Results: It was found that the greater is the contrast modulation amplitude of the areas shaping the face, the more precisely the emotion is identified. Conclusions: The results suggest that areas with a greater increase in nonlocal contrast are more informative in facial images, and the second-order visual mechanisms can claim the role of filters that detect areas of interest, attract visual attention and are windows through which subsequent levels of visual processing receive valuable information.


2004 ◽  
Vol 63 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Fred W. Mast ◽  
Charles M. Oman

The role of top-down processing on the horizontal-vertical line length illusion was examined by means of an ambiguous room with dual visual verticals. In one of the test conditions, the subjects were cued to one of the two verticals and were instructed to cognitively reassign the apparent vertical to the cued orientation. When they have mentally adjusted their perception, two lines in a plus sign configuration appeared and the subjects had to evaluate which line was longer. The results showed that the line length appeared longer when it was aligned with the direction of the vertical currently perceived by the subject. This study provides a demonstration that top-down processing influences lower level visual processing mechanisms. In another test condition, the subjects had all perceptual cues available and the influence was even stronger.


Sign in / Sign up

Export Citation Format

Share Document