Influence of post-injection strategies and CeO2 nanoparticles additives in the C30D blends and diesel on engine performance, NOX emissions, and PM characteristics in diesel engine

Author(s):  
Mohammed A. Fayad ◽  
Bashar R. AL-Ogaidi ◽  
Marwa K. Abood ◽  
Hind A. AL-Salihi
2020 ◽  
pp. 146808742098091
Author(s):  
Sheikh Muhammad Farhan ◽  
Wang Pan ◽  
Wu Yan ◽  
Yi Jing ◽  
Lei Lili

An experimental study was carried out to analyze the influence of different post-injection strategies on the regulated and unregulated emissions from a heavy-duty compression ignition (CI) diesel engine. FTIR (Fourier transform infrared spectroscopy) was used to measure and analyze the exhaust emissions which include regulated such as NOx, soot, and unregulated emissions including acetaldehyde, formaldehyde, methane, ethane, propane, ethylene, propylene, and ethyne. Experimental results manifested that the post-injection technique can notably minimize the regulated and unregulated emissions as compared to a single main injection. Under different post-injection conditions, a trade-off relation was also found between soot and NOx emissions. In soot mitigation, the start of injection (SOI) at 40° crank angle (CA) incorporate with 5–15 mg post-injection fuel mass was proved very effective and about 26% lower soot emissions were recorded than single main injection. At SOI 20°CA, with 15 mg post-injection fuel mass, a reduction in the NOx emissions was observed up to 20% and in THC up to 60%. Unregulated emissions (other than formaldehyde and acetaldehyde) were found lower with 5, 10, and 15 mg post-injection fuel mass at 20, 40, 100, and 120°CA but increased at SOI of 60°CA than single main injection. In addition, light HCs, and THC emissions at SOI 60°CA were found to increase which could be beneficial for after-treatment devices.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2644 ◽  
Author(s):  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor ◽  
Wan Mohd Faizal Wan Mahmood

Blending diesel with biofuels, such as ethanol and palm oil methyl ester (PME), enhances the fuel properties and produces improved engine performance and low emissions. However, the presence of ethanol, which has a small cetane number and low heating value, reduces the fuel ignitability. This work aimed to study the effect of injection strategies, compression ratio (CR), and air intake temperature (Ti) modification on blend ignitability, combustion characteristics, and emissions. Moreover, the best composition of diesel–ethanol–PME blends and engine modification was selected. A simulation was also conducted using Converge CFD software based on a single-cylinder direct injection compression ignition Yanmar TF90 engine parameter. Diesel–ethanol–PME blends that consist of 10% ethanol with 40% PME (D50E10B40), D50E25B25, and D50E40B10 were selected and conducted on different injection strategies, compression ratios, and intake temperatures. The results show that shortening the injection duration and increasing the injected mass has no significant effect on ignition. Meanwhile, advancing the injection timing improves the ignitability but with weak ignition energy. Therefore, increasing the compression ratio and ambient temperature helps ignite the non-combustible blends due to the high temperature and pressure. This modification allowed the mixture to ignite with a minimum CR of 20 and Ti of 350 K. Thus, blending high ethanol contents in a diesel engine can be applied by advancing the injection, increasing the CR, and increasing the ambient temperature. From the emission comparison, the most suitable mixtures that can be operated in the engine without modification is D50E25B25, and the most appropriate modification on the engine is by increasing the ambient temperature at 350 K.


Fuel ◽  
2020 ◽  
Vol 267 ◽  
pp. 117256 ◽  
Author(s):  
Sheikh Muhammad Farhan ◽  
Wang Pan ◽  
Wu Yan ◽  
Yi Jing ◽  
Lei Lili

Author(s):  
Long Liu ◽  
Naoto Horibe ◽  
Tatsuya Komizo ◽  
Issei Tamura ◽  
Takuji Ishiyama

With the universal utilization of the common-rail injection system in automotive diesel engines, the multistage injection strategies have become typical approaches to satisfy the increasingly stringent emission regulations, and especially the post injection has received considerable attention as an effective way for reducing the smoke emissions. Normally the post injection is applied in combination with the pilot injection to restrain the NOx emissions, smoke emissions, and combustion noise simultaneously, and the pilot injection condition affects the combustion process of the main injection and might affect the smoke reduction effect of the post injection. Thus this study aims at obtaining the post injection strategy to reduce smoke emissions in a diesel engine, where post injection is employed in combination with pilot injection. The experiments were performed using a single-cylinder diesel engine under various conditions of pilot and post injection with a constant load at an IMEP of 1.01 MPa, fixed speed of 1500 rpm, and NOx emissions concentration of 150 ± 5 ppm that was maintained by adjusting the EGR ratio. The injection pressure was set at 90 MPa at first, and then it was varied to 125 MPa to evaluate the effects of post injection on the smoke reduction in the case of higher injection pressure. The experimental results show that small post injection quantity with a short interval from the end of main injection causes less smoke emissions. And larger pilot injection quantity and later pilot injection timing lead to higher smoke emissions. And then, to explore and interpret the smoke emissions tendencies with varying pilot and post injection conditions, the experimental results of three-stage injection conditions were compared to those of two reference cases, which only included the pilot and main injection, and the interaction between main spray flames and post sprays was applied for analysis. Based on the comparative analysis, the larger smoke reduction effect of post injection was observed with the larger pilot injection quantity, while it is not greatly influenced by pilot injection timing. In addition, the smoke emissions can be reduced considerably by increasing the injection pressure, however the smoke reduction effect of post injection was attenuated. And all of these tendencies were able to be interpreted by considering the intensity variation of the interaction between main spray flames and post sprays.


Author(s):  
Fan Su ◽  
Malcolm Payne ◽  
Manuel Vazquez ◽  
Peter Eggleton ◽  
Alex Vincent

Biodiesel blends were prepared by mixing low sulphur #2 diesel and biodiesel of two origins (canola and frying oil) at two different concentrations (5% and 20%). They were tested in a single-cylinder four-stroke medium-speed diesel engine under three engine modes representing idle, about 50% power and full load conditions. Engine performance and emissions data obtained with the blends were compared to that of engine running with the #2 diesel. Results indicated that the 5% blends could maintain engine power and fuel economy. Frying oil based B5 provided more significant reductions on CO, THC and PM emissions and increments on NOx emissions as compared with that of the canola B5 fuel. The 20% blends reduce engine CO, PM and smoke emissions, but increase NOx emissions by up to approximately 8%. Engine cylinder pressure and injection pressure data was also collected to provide additional information for evaluation of fuel economy and emissions benefits of using the blends.


2005 ◽  
Author(s):  
Alan C. Hansen ◽  
Michael R. Gratton ◽  
Wenqiao Yuan

1991 ◽  
Vol 113 (3) ◽  
pp. 365-369 ◽  
Author(s):  
R. R. Sekar ◽  
W. W. Marr ◽  
D. N. Assanis ◽  
R. L. Cole ◽  
T. J. Marciniak ◽  
...  

Use of oxygen-enriched combustion air in diesel engines can lead to significant improvements in power density, as well as reductions in particulate emissions, but at the expense of higher NOx emissions. Oxygen enrichment would also lead to lower ignition delays and the opportunity to burn lower grade fuels. Analytical and experimental studies are being conducted in parallel to establish the optimal combination of oxygen level and diesel fuel properties. In this paper, cylinder pressure data acquired on a single-cylinder engine are used to generate heat release rates for operation under various oxygen contents. These derived heat release rates are in turn used to improve the combustion correlation—and thus the prediction capability—of the simulation code. It is shown that simulated and measured cylinder pressures and other performance parameters are in good agreement. The improved simulation can provide sufficiently accurate predictions of trends and magnitudes to be useful in parametric studies assessing the effects of oxygen enrichment and water injection on diesel engine performance. Measured ignition delays, NOx emissions, and particulate emissions are also compared with previously published data. The measured ignition delays are slightly lower than previously reported. Particulate emissions measured in this series of tests are significantly lower than previously reported.


Sign in / Sign up

Export Citation Format

Share Document