scholarly journals Modification of a Direct Injection Diesel Engine in Improving the Ignitability and Emissions of Diesel–Ethanol–Palm Oil Methyl Ester Blends

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2644 ◽  
Author(s):  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor ◽  
Wan Mohd Faizal Wan Mahmood

Blending diesel with biofuels, such as ethanol and palm oil methyl ester (PME), enhances the fuel properties and produces improved engine performance and low emissions. However, the presence of ethanol, which has a small cetane number and low heating value, reduces the fuel ignitability. This work aimed to study the effect of injection strategies, compression ratio (CR), and air intake temperature (Ti) modification on blend ignitability, combustion characteristics, and emissions. Moreover, the best composition of diesel–ethanol–PME blends and engine modification was selected. A simulation was also conducted using Converge CFD software based on a single-cylinder direct injection compression ignition Yanmar TF90 engine parameter. Diesel–ethanol–PME blends that consist of 10% ethanol with 40% PME (D50E10B40), D50E25B25, and D50E40B10 were selected and conducted on different injection strategies, compression ratios, and intake temperatures. The results show that shortening the injection duration and increasing the injected mass has no significant effect on ignition. Meanwhile, advancing the injection timing improves the ignitability but with weak ignition energy. Therefore, increasing the compression ratio and ambient temperature helps ignite the non-combustible blends due to the high temperature and pressure. This modification allowed the mixture to ignite with a minimum CR of 20 and Ti of 350 K. Thus, blending high ethanol contents in a diesel engine can be applied by advancing the injection, increasing the CR, and increasing the ambient temperature. From the emission comparison, the most suitable mixtures that can be operated in the engine without modification is D50E25B25, and the most appropriate modification on the engine is by increasing the ambient temperature at 350 K.

Author(s):  
Biplab K. Debnath ◽  
Ujjwal K. Saha ◽  
Niranjan Sahoo

Palm Oil Methyl Ester (POME) is a very promising alternative renewable biofuel. This is because it has a better cetane number and a comparable lower calorific value with respect to its competitors. However, due to difference in molecular composition and hence dissimilar properties, it does not perform proficiently in diesel engine with standard design and operating parameters. Therefore, a study is arranged to realize the effect of compression ratio variation on POME run in diesel engine. The load is varied from ‘no load’ to ‘full load’ with six equal intervals. During this study, standard diesel injection timing is maintained unaffected. The study conveys that at higher compression ratio, POME causes reduction in brake fuel consumption and thereby increases the engine efficiency. The increase in compression ratio also causes smoother combustion, lower ignition delay with early heat release than diesel operation. The detrimental emission quantities in the form of carbon monoxide, oxides of nitrogen and hydrocarbon emissions are also cut down with presence of POME in the diesel engine at high compression ratio. Thus, POME can be regarded as a good alternative fuel for diesel engine for locomotive applications.


2010 ◽  
Vol 7 (2) ◽  
pp. 399-406 ◽  
Author(s):  
M. Venkatraman ◽  
G. Devaradjane

In the present investigation, tests were carried out to determine engine performance, combustion and emissions of a naturally aspirated direct injection diesel engine fueled with diesel and Jatropha Methyl ester and their blends (JME10, JME20 and JME30). Comparison of performance and emission was done for different values of compression ratio, injection pressure and injection timing to find best possible combination for operating engine with JME. It is found that the combined compression ratio of 19:1, injection pressure of 240 bar and injection timing of 27?bTDC increases the BTHE and reduces BSFC while having lower emissions.From the investigation, it is concluded that the both performance and emissions can considerably improved for Methyl ester of jatropha oil blended fuel JME20 compared to diesel.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5663 ◽  
Author(s):  
Mahantesh Marikatti ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
Y.H. Basavarajappa ◽  
Manzoore Elahi M Soudagar ◽  
...  

The present work is mapped to scrutinize the consequence of biodiesel and gaseous fuel properties, and their impact on compression-ignition (CI) engine combustion and emission characteristics in single and dual fuel operation. Biodiesel prepared from non-edible oil source derived from Thevetia peruviana belonging to the plant family of Apocynaceaeis. The fuel has been referred as methyl ester of Thevetia peruviana (METP) and adopted as pilot fuel for the effective combustion of compressed gaseous fuel of hydrogen. This investigation is an effort to augment the engine performance of a biodiesel-gaseous fueled diesel engine operated under varied engine parameters. Subsequently, consequences of gas flow rate, injection timing, gas entry type, and manifold gas injection on the modified dual-fuel engine using conventional mechanical fuel injections (CMFIS) for optimum engine performance were investigated. Fuel consumption, CO, UHC, and smoke formations are spotted to be less besides higher NOx emissions compared to CMFIS operation. The fuel burning features such as ignition delay, burning interval, and variation of pressure and heat release rates with crank angle are scrutinized and compared with base fuel. Sustained research in this direction can convey practical engine technology, concerning fuel combinations in the dual fuel mode, paving the way to alternatives which counter the continued fossil fuel utilization that has detrimental impacts on the climate.


Author(s):  
Z Win ◽  
R P Gakkhar ◽  
S C Jain ◽  
M Bhattacharya

The conflicting effects of the operating parameters and the injection parameter (injection timing) on engine performance and environmental pollution factors is studied in this paper. As an optimization objective, a 3.5 kW small direct injection diesel engine was used as the test engine, and its speed, load, and static injection timing were varied as per 4 × 4 × 3 full factorial design array. Radiated engine noise, smoke level, brake specific fuel consumption, and emissions of unburned hydrocarbons and nitrogen oxides were captured for all test runs. Objective functions relating input and output parameters were obtained using response surface methodology (RSM). Parameter optimization was carried out to control output responses under their mean limit using multi-objective goal programming and minimax programming optimization techniques.


Author(s):  
K Anand ◽  
R P Sharma ◽  
P S Mehta

Suitability of vegetable oil as an alternative to diesel fuel in compression ignition engines has become attractive, and research in this area has gained momentum because of concerns on energy security, high oil prices, and increased emphasis on clean environment. The experimental work reported here has been carried out on a turbocharged direct-injection multicylinder truck diesel engine using diesel fuel and jatropha methyl ester (JME)-diesel blends. The results of the experimental investigation indicate that an increase in JME quantity in the blend slightly advances the dynamic fuel injection timing and lowers the ignition delay compared with the diesel fuel. A maximum rise in peak pressure limited to 6.5 per cent is observed for fuel blends up to 40 per cent JME for part-load (up to about 50 per cent load) operations. However, for a higher-JME blend, the peak pressures decrease at higher loads remained within 4.5 per cent. With increasing proportion of JME in the blend, the peak pressure occurrence slightly advances and the maximum rate of pressure rise, combustion duration, and exhaust gas temperature decrease by 9 per cent, 15 per cent and 17 per cent respectively. Although the changes in brake thermal efficiencies for 20 per cent and 40 per cent JME blends compared with diesel fuel remain insignificant, the 60 per cent JME blend showed about 2.7 per cent improvement in the brake thermal efficiency. In general, it is observed that the overall performance and combustion characteristics of the engine do not alter significantly for 20 per cent and 40 per cent JME blends but show an improvement over diesel performance when fuelled with 60 per cent JME blend.


2013 ◽  
Vol 465-466 ◽  
pp. 322-326 ◽  
Author(s):  
M. Adlan Abdullah ◽  
Farid Nasir Ani ◽  
Masjuki Hassan

It is in the interest of proponents of biodiesel to increase the utilization of the renewable fuel. The similarities of the methyl ester properties to diesel fuel and its miscibility proved to be an attractive advantage. It is however generally accepted that there are some performance and emissions deficit when a diesel engine is operated with biodiesel. There are research efforts to improve the diesel engine design to optimize the combustion with biodiesel. Since the common rail engines operates on flexible injection strategies, there exist an opportunity to improve engine performance and offset the fuel economy deficit by means of optimizing the engine control strategies. This approach may prove to be more practical and easily implemented. This study investigated the effects of the fuel injection parameters - rail pressure, injection duration and injection timing - on a common rail passenger car engine in terms of the fuel economy. Palm oil based biodiesel up to 30% blend in diesel was used in this study. The end of injection, (EOI), was found to be the most important parameter for affecting fuel consumption and thermal efficiency.


Sign in / Sign up

Export Citation Format

Share Document