Predicting dynamic modulus of elasticity of Norway spruce structural timber by forest inventory, airborne laser scanning and harvester-derived data

2018 ◽  
Vol 33 (6) ◽  
pp. 603-612 ◽  
Author(s):  
Carolin Fischer ◽  
Olav A. Høibø ◽  
Geir I. Vestøl ◽  
Marius Hauglin ◽  
Endre H. Hansen ◽  
...  
Akustika ◽  
2020 ◽  
pp. 45-50
Author(s):  
Alena Rohanová

This paper explores the analysis of sound speeds in the longitudinal direction and their reduction to the reference moisture content w = 12 %. The sound speed cw was determined with Sylvatest Duo device. Moisture content of beech sawmill assortments (round timber: N = 16, logs: N = 2 × 16, structural boards: N = 54) in the range of 12 – 72 % was measured. For the analysis purposes, the sound speed was converted to reference conditions (c12, uref = 12%). A second-degree polynomial (parabola) with a regression equation of the form: c// = 5649 - 27,371 × w + 0.0735 × w2 was used to convert cw to c12, and correction of measured and calculated values was used as well. The sound speeds c12 in sawmill assortments (c12,round, c12,log, c12,board) were evaluated by linear dependences. Dependence was not confirmed for c12,round and c12,board1 (r = 0.168), in contrast for c12,round and c12,log2 the dependence is statistically very significant (r = 0.634). The results of testing showed that the most suitable procedure for predicting quality of structural timber is the first step round timber – log2, the second step: log2 - board2. More exact results of the construction boards were obtained from log2 than from log1. The sound speed is used in the calculation of dynamic modulus of elasticity (Edyn). EN 408 mentions the possibility of using dynamic modulus of elasticity as an alternative method in predicting the quality of structural timber.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Schumacher ◽  
Marius Hauglin ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Background The age of forest stands is critical information for forest management and conservation, for example for growth modelling, timing of management activities and harvesting, or decisions about protection areas. However, area-wide information about forest stand age often does not exist. In this study, we developed regression models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58° and 65° N in an 18.2 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2, and existing public map data. We performed model validation on an independent data set consisting of 63 spruce stands with known age. Results The best modelling strategy was to fit independent linear regression models to each observed site index (SI) level and using a SI prediction map in the application of the models. The most important predictor variable was an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6% to 26%) for SI-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between − 1 and 3 years. The models improved with increasing SI and the RMSEs were largest for low SI stands older than 100 years. Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56 years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were 12 (22%) and 2 years (3%), respectively. Conclusions Tree height estimated from airborne laser scanning and predicted site index were the most important variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The models could be considered for practical applications, although we see considerable potential for improvements if better SI maps were available.


2018 ◽  
Vol 206 ◽  
pp. 254-259 ◽  
Author(s):  
Ronald E. McRoberts ◽  
Qi Chen ◽  
Dale D. Gormanson ◽  
Brian F. Walters

2021 ◽  
Vol 308-309 ◽  
pp. 108568
Author(s):  
Luiza Tymińska- Czabańska ◽  
Jarosław Socha ◽  
Paweł Hawryło ◽  
Radomir Bałazy ◽  
Mariusz Ciesielski ◽  
...  

2020 ◽  
Vol 77 (3) ◽  
Author(s):  
Ville Vähä-Konka ◽  
Matti Maltamo ◽  
Timo Pukkala ◽  
Kalle Kärhä

Abstract Key message We examined the accuracy of the stand attribute data based on airborne laser scanning (ALS) provided by the Finnish Forest Centre. The precision of forest inventory data was compared for the first time with operative logging data measured by the harvester. Context Airborne laser scanning (ALS) is increasingly used together with models to predict the stand attributes of boreal forests. The information is updated by growth models. Information produced by remote sensing, model prediction, and growth simulation needs field verification. The data collected by harvesters on logging sites provide a means to evaluate and verify the accuracy of the ALS-based data. Aims This study investigated the accuracy of ALS-based forest inventory data provided by the Finnish Forest Centre at the stand level, using harvester data as the reference. Special interest was on timber assortment volumes where the quality reductions of sawlog are model predictions in ALS-based data and true realized reductions in the logging data. Methods We examined the accuracy of total volume and timber assortment volumes by comparing ALS-based data and operative logging data measured by a harvester. This was done both for clear cuttings and thinning sites. Accuracy of the identification of the dominant tree species of the stand was examined using the Kappa coefficient. Results In clear-felling sites, the total harvest removals based on ALS and model prediction had a RMSE% of 26.0%. In thinning, the corresponding difference in the total harvested removal was 42.4%. Compared to logged volume, ALS-based prediction overestimated sawlog removals in clear cuttings and underestimated pulpwood removals. Conclusion The study provided valuable information on the accuracy of ALS-based stand attribute data. Our results showed that ALS-based data need better methods to predict the technical quality of harvested trees, to avoid systematic overestimates of sawlog volume. We also found that the ALS-based estimates do not accurately predict the volume of trees removed in actual thinnings.


2015 ◽  
Vol 164 ◽  
pp. 36-42 ◽  
Author(s):  
Ronald E. McRoberts ◽  
Erik Næsset ◽  
Terje Gobakken ◽  
Ole Martin Bollandsås

Forests ◽  
2013 ◽  
Vol 4 (3) ◽  
pp. 518-536 ◽  
Author(s):  
Joanne White ◽  
Michael Wulder ◽  
Mikko Vastaranta ◽  
Nicholas Coops ◽  
Doug Pitt ◽  
...  

Forests ◽  
2017 ◽  
Vol 8 (3) ◽  
pp. 72 ◽  
Author(s):  
Tuomo Kauranne ◽  
Sergey Pyankov ◽  
Virpi Junttila ◽  
Alexander Kedrov ◽  
Andrey Tarasov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document