Relationship of in vitro and in planta screening: improving the selection process for biological control agents against Fusarium root rot in row crops

2018 ◽  
Vol 51 (3-4) ◽  
pp. 156-169 ◽  
Author(s):  
L. Parikh ◽  
M. J. Eskelson ◽  
A. O. Adesemoye
1999 ◽  
Vol 50 (8) ◽  
pp. 1469 ◽  
Author(s):  
S. Simpfendorfer ◽  
T. J. Harden ◽  
G. M. Murray

The interaction between 29 isolates of Rhizobium and the in vitro growth of 3 strains of Phytophthora clandestina was investigated to determine the potential of these bacteria as biological control agents against root rot of subterranean clover (Trifolium subterraneum L.). The biological control activity of Rhizobium on the severity of root disease in seedlings was also investigated under glasshouse conditions. Thirteen of the 29 Rhizobium isolates caused significant reductions in the hyphal growth of the 3 P. clandestina isolates examined. Inoculation of seedlings with Rhizobium trifolii reduced the severity of root disease by 14–58% with corresponding increases in dry matter production of 20–73%. These results indicate that Rhizobium species have potential as biological control agents against the root rot of T. subterraneum seedlings caused by P. clandestina.


2021 ◽  
Author(s):  
Robert Blundell ◽  
Molly Arreguin ◽  
Akif Eskalen

SummaryGrapevine trunk diseases (GTDs) threaten the economic sustainability of viticulture worldwide causing a significant reduction of both yields and quality of grapes. Biological control presents a promising sustainable alternative to cultural and chemical methods to mitigate the effects of pathogens causing GTDs, including Botryosphaeria dieback, Eutypa dieback and Esca. This study aimed to identify naturally occurring potential biological control agents from a variety of grapevine tissues, including sap, cane and pith and evaluate their antagonistic activity against selected fungal pathogens responsible for GTDs in vitro. Bacterial and fungal isolates were preliminary screened in vitro to determine their antifungal activity via a dual culture assay against Neofusicoccum parvum and Eutypa lata. Among the fungal isolates, Trichoderma spp. inhibited E. lata mycelial growth up to 64% and N. parvum mycelial growth up to 73% with overgrowth and stopped growth being the likely antagonistic mechanisms. Among the bacterial isolates, Bacillus spp. inhibited E. lata mycelial growth up to 20% and N. parvum mycelial growth up to 40%. Select antagonistic isolates of Trichoderma, Bacillus and Aureobasidium spp. were subject to further dual culture antifungal analysis against Diplodia seriata and Diaporthe ampelina, with Trichoderma isolates consistently causing the greatest inhibition. Volatile organic compound antifungal analysis revealed that these Trichoderma isolates resulted significantly inhibited mycelial growth of N. parvum, E. lata and D. ampelina causing up to 20.11%, 60.55% and 70.9% inhibition respectively (P≤0.05). Multilocus sequence analysis revealed that the Trichoderma isolates are most closely related to Trichoderma asperellum and Trichoderma hamatum. This study identifies grapevine sap as a novel source of potential biological control agents for control of GTDs to support existing efforts to control GTDs. Further testing will be necessary to fully characterize these microbes mode of antagonism and assess their efficacy for pruning wound protection in planta.


1993 ◽  
Vol 44 (4) ◽  
pp. 773 ◽  
Author(s):  
PM Myatt ◽  
PJ Dart ◽  
AC Hayward

Over 1000 bacteria were isolated from rhizospheres of chickpea (Cicer arietinum L.) and evaluated for their potential as biological control agents of Phytophthora megasperma f. sp. medicaginis root rot of chickpea in vitro. Following in vitro plate assays for fungal antagonism, initial pot assay results showed 31 isolates with the ability to limit or delay chickpea seedling disease in a pasteurized soil. The most promising isolates were identified as Pseudomonas cepacia (seven strains) and P. fluorescens (two strains). No relationship was observed between biological control activity of the bacteria and the soils, chickpea cultivars or the methods used in their isolation.


1999 ◽  
Vol 50 (8) ◽  
pp. I

The interaction between 29 isolates of Rhizobium and the in vitro growth of 3 strains of Phytophthora clandestina was investigated to determine the potential of these bacteria as biological control agents against root rot of subterranean clover (Trifolium subterraneum L.). The biological control activity of Rhizobium on the severity of root disease in seedlings was also investigated under glasshouse conditions. Thirteen of the 29 Rhizobium isolates caused significant reductions in the hyphal growth of the 3 P. clandestina isolates examined. Inoculation of seedlings with Rhizobium trifolii reduced the severity of root disease by 14–58% with corresponding increases in dry matter production of 20–73%. These results indicate that Rhizobium species have potential as biological control agents against the root rot of T. subterraneum seedlings caused by P. clandestina.


1987 ◽  
Vol 33 (10) ◽  
pp. 850-856 ◽  
Author(s):  
G. Vannacci ◽  
G. E. Harman

Forty-two microorganisms were tested as biological control agents against Alternaria raphani and A. brassicicola. Tests were conducted for in vitro antagonistic ability, for ability to control the pathogens on naturally infected seeds germinated on moistened blotters, and in planting mix in growth chamber studies, and for their ability to reduce pod infection. The organisms tested were obtained from cruciferous seeds or were strains already identified as being effective against soil-borne Pythium species. The blotter test indicated that six organisms increased both the number of healthy seedlings and the number of seedlings produced from A. raphani infected radish seeds. An additional seven strains improved either germination or increased the number of healthy seedlings. Twenty-nine organisms increased the number of healthy cabbage seedlings from A. brassicicola infected seeds, but total germination was not modified by any treatment. Experiments in planting mix showed that five antagonists (Chaetomium globosum, two strains of Trichoderma harzianum, T. koningii, and Fusarium sp.) increased the number of healthy plants in both radish samples tested, while four additional antagonists provided a significant increase in only one of the samples tested. The five antagonists that consistently increased numbers of healthy radish seedlings also decreased pod infection by A. raphani. None were as effective as iprodrone, however. Several effective antagonists were found to be mycoparasitic against Alternaria spp. Some strains of Trichoderma previously found to be effective against Pythium spp. were also effective against Alternaria spp., indicating that these strains have a wide host range.


2018 ◽  
Vol 10 (3) ◽  
pp. 276
Author(s):  
Cleonice Lubian ◽  
Danielle Dutra Martinha ◽  
Roberto Luis Portz ◽  
Alexandre Gonçalves dos Santos e Silva Filho ◽  
Vagner Gularte Cortez ◽  
...  

Biological control is a method of controlling pests through the use of other living organisms. The purposes of this study were to test Hohenbuehelia species as biological control agents against Panagrellus redivivus in vitro, evaluating nematodes influence on mycelia growth; establishing daily indexes for predation and growth and setting predation percentage. Five species previously identified as 436-Hohenbuehelia mastrucata (Nematoctonus hamatus), 528-H. bullulifera (not described so far), 581-H. paraguayensis (N. sp.), 582-H. sp. (N. sp.) and 631-H. portegna (N. campylosporus) were submitted to anamorphic purification directly from basidioma. Afterwards, 100 nematodes were added to each pure colony for predation test. Evaluation started right after 24 hours of nematode-fungus interaction. Immobilized and/or penetrated nematodes were counted and mycelia growth was measured. Results were subjected to variance analyses. Hohenbuehelia mastrucata had the best performance in growth speed, followed by H. portegna and H. paraguayensis; Nematodes multiplyied much but none specie grew more as an influence of their movement under mycelium, however all species formed trap devices and some of them produced adhesive or repelent substances. Trap devices were formed in control plates also. The plates of H. paraguayensis without nematodes grew more than treatments. Cumulative predation of H. portegna was the highest at 24 (195.5%) and 48 hours (235%). At the last evaluation day, H. paraguayensis preyed the same amount (185.75%) than H. portegna, followed by H. mastrucata (109.51%). Resulst of predation daily indexes displayed chronological activity for each isolate, where H. portegna was very reactive at first 24 hours, H. mastrucata raised its predacious activity in 48 hours being constant from this time on and H. paraguayensis pointed out itself at 72 hours. Other species presented low predation and growth indexes throughout experiment.


2017 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Tatsuya Ohike ◽  
Minori Maeda ◽  
Tetsuya Matsukawa ◽  
Masahiro Okanami ◽  
Shin’ichiro Kajiyama ◽  
...  

Rhizoctonia solani is fungal plant pathogen that infects many different host plants. Recently, biological control agents that are friendly to the environment and ecosystems have attracted much attention as an alternative to the use of chemical fungicide which have been used worldwide to control soil borne pathogens including R. solani. In this study, 53 strains of actinomycetes isolated from environmental soils, and antifungal activities of them were assessed by the dual culture assay. Strain KT showed strong inhibitory activities against 8 phytopathogenic fungi. A great suppressive effect on R. solani growth was observed in the inoculation test of plants using cucumber and chin-geng-sai. In addition, infection of Bipolaris oryzae also could be suppressed in the detached leaf assay using oats. As a result of genetic analysis, it was shown that KT was a species closely related to Streptomyces lavenduligriseus NRRL B-3173T. However, as far as we know, there is no report for biological control agents using S. lavenduligriseus. This study suggests that the strain KT may useful as biological control agents to suppress various crop diseases.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
SUPRIYANTO ◽  
PURWANTO ◽  
S.H. POROMARTO ◽  
SUPYANI

Abstract. Supriyanto, Purwanto, Poromarto SH, Supyani. 2020. Evaluation of in vitro antagonistic activity of fungi from peatlands against Ganoderma species under acidic conditions. Biodiversitas 21: 2935-2945. The use of peatlands is a significant contributor to the world’s palm oil production. A serious problem of oil palm plantations in peatlands is the high incidence of basal stem rot (BSR) disease caused by Ganoderma, which has a higher attack rate than on mineral soils. There is no effective way to control Ganoderma in peatlands. At present, the effort for the same focuses on environment-friendly biological methods; however, this is constrained by the unavailability of appropriate biological agents for peatlands. The development of biological control agents for peatlands is hampered by limited data on biological control of Ganoderma in peatlands. This research was conducted to evaluate the in vitro antagonistic activity of fungi isolated from a peatland in acidic pH conditions. Twenty-seven Ganoderma-antagonistic fungi from peatland were evaluated for their activity and their ability to antagonism in vitro within a pH range of 2-7. The results show that most antagonistic fungi from peatland, based on biomass weight, the sporulation ability, and germination of conidium, were able to grow optimally at pH 3.0-4.0, indicating that most of the Ganoderma-antagonistic fungi from peatland can be used as biological control agents for BSR on oil palms in peatlands.


Sign in / Sign up

Export Citation Format

Share Document