Meeting the Kyoto target: implications for the Australian livestock industries

1999 ◽  
Vol 50 (8) ◽  
pp. I

The interaction between 29 isolates of Rhizobium and the in vitro growth of 3 strains of Phytophthora clandestina was investigated to determine the potential of these bacteria as biological control agents against root rot of subterranean clover (Trifolium subterraneum L.). The biological control activity of Rhizobium on the severity of root disease in seedlings was also investigated under glasshouse conditions. Thirteen of the 29 Rhizobium isolates caused significant reductions in the hyphal growth of the 3 P. clandestina isolates examined. Inoculation of seedlings with Rhizobium trifolii reduced the severity of root disease by 14–58% with corresponding increases in dry matter production of 20–73%. These results indicate that Rhizobium species have potential as biological control agents against the root rot of T. subterraneum seedlings caused by P. clandestina.

1999 ◽  
Vol 50 (8) ◽  
pp. 1469 ◽  
Author(s):  
S. Simpfendorfer ◽  
T. J. Harden ◽  
G. M. Murray

The interaction between 29 isolates of Rhizobium and the in vitro growth of 3 strains of Phytophthora clandestina was investigated to determine the potential of these bacteria as biological control agents against root rot of subterranean clover (Trifolium subterraneum L.). The biological control activity of Rhizobium on the severity of root disease in seedlings was also investigated under glasshouse conditions. Thirteen of the 29 Rhizobium isolates caused significant reductions in the hyphal growth of the 3 P. clandestina isolates examined. Inoculation of seedlings with Rhizobium trifolii reduced the severity of root disease by 14–58% with corresponding increases in dry matter production of 20–73%. These results indicate that Rhizobium species have potential as biological control agents against the root rot of T. subterraneum seedlings caused by P. clandestina.


1993 ◽  
Vol 44 (4) ◽  
pp. 773 ◽  
Author(s):  
PM Myatt ◽  
PJ Dart ◽  
AC Hayward

Over 1000 bacteria were isolated from rhizospheres of chickpea (Cicer arietinum L.) and evaluated for their potential as biological control agents of Phytophthora megasperma f. sp. medicaginis root rot of chickpea in vitro. Following in vitro plate assays for fungal antagonism, initial pot assay results showed 31 isolates with the ability to limit or delay chickpea seedling disease in a pasteurized soil. The most promising isolates were identified as Pseudomonas cepacia (seven strains) and P. fluorescens (two strains). No relationship was observed between biological control activity of the bacteria and the soils, chickpea cultivars or the methods used in their isolation.


1974 ◽  
Vol 25 (4) ◽  
pp. 537 ◽  
Author(s):  
GE Stovold

The problem of poor re-establishment and poor seasonal production in long-term subterranean clover pastures has been recognized for some time, particularly on the Southern Tableland and Slopes regions of New South Wales. Field and laboratory investigations showed that rotting of the lateral feeder roots was a common disease of subterranean clover during the cool part of the growing season. Isolations made from diseased roots yielded a predominance of Pythium spp. of which Pythiurn irregulare was the most common. Pathogenicity tests demonstrated that P. irregulare consistently caused damping-off of germinating subterranean clover. This fungus also infected established plants and at low temperatures caused severe reduction of dry matter production. Symptoms produced on artificially inoculated plants were identical with those observed on plants infected in the field. Soil moisture and the level of fungal inoculum added did not have a critical effect on the severity of root disease. A range of other important pasture and crop species were also artificially infected with P. irregulare, with resulting necrosis of feeder roots. In vitro studies of factors affecting the growth of P. irregulare showed that this pathogen was well adapted to survive and cause disease in cold wet soils, the conditions most favourable for root rot in the field. The importance of P. irregulare as a pathogen of established plants and possible means of reducing its effect on the growth of subterranean clover are discussed.


1987 ◽  
Vol 33 (10) ◽  
pp. 850-856 ◽  
Author(s):  
G. Vannacci ◽  
G. E. Harman

Forty-two microorganisms were tested as biological control agents against Alternaria raphani and A. brassicicola. Tests were conducted for in vitro antagonistic ability, for ability to control the pathogens on naturally infected seeds germinated on moistened blotters, and in planting mix in growth chamber studies, and for their ability to reduce pod infection. The organisms tested were obtained from cruciferous seeds or were strains already identified as being effective against soil-borne Pythium species. The blotter test indicated that six organisms increased both the number of healthy seedlings and the number of seedlings produced from A. raphani infected radish seeds. An additional seven strains improved either germination or increased the number of healthy seedlings. Twenty-nine organisms increased the number of healthy cabbage seedlings from A. brassicicola infected seeds, but total germination was not modified by any treatment. Experiments in planting mix showed that five antagonists (Chaetomium globosum, two strains of Trichoderma harzianum, T. koningii, and Fusarium sp.) increased the number of healthy plants in both radish samples tested, while four additional antagonists provided a significant increase in only one of the samples tested. The five antagonists that consistently increased numbers of healthy radish seedlings also decreased pod infection by A. raphani. None were as effective as iprodrone, however. Several effective antagonists were found to be mycoparasitic against Alternaria spp. Some strains of Trichoderma previously found to be effective against Pythium spp. were also effective against Alternaria spp., indicating that these strains have a wide host range.


2018 ◽  
Vol 10 (3) ◽  
pp. 276
Author(s):  
Cleonice Lubian ◽  
Danielle Dutra Martinha ◽  
Roberto Luis Portz ◽  
Alexandre Gonçalves dos Santos e Silva Filho ◽  
Vagner Gularte Cortez ◽  
...  

Biological control is a method of controlling pests through the use of other living organisms. The purposes of this study were to test Hohenbuehelia species as biological control agents against Panagrellus redivivus in vitro, evaluating nematodes influence on mycelia growth; establishing daily indexes for predation and growth and setting predation percentage. Five species previously identified as 436-Hohenbuehelia mastrucata (Nematoctonus hamatus), 528-H. bullulifera (not described so far), 581-H. paraguayensis (N. sp.), 582-H. sp. (N. sp.) and 631-H. portegna (N. campylosporus) were submitted to anamorphic purification directly from basidioma. Afterwards, 100 nematodes were added to each pure colony for predation test. Evaluation started right after 24 hours of nematode-fungus interaction. Immobilized and/or penetrated nematodes were counted and mycelia growth was measured. Results were subjected to variance analyses. Hohenbuehelia mastrucata had the best performance in growth speed, followed by H. portegna and H. paraguayensis; Nematodes multiplyied much but none specie grew more as an influence of their movement under mycelium, however all species formed trap devices and some of them produced adhesive or repelent substances. Trap devices were formed in control plates also. The plates of H. paraguayensis without nematodes grew more than treatments. Cumulative predation of H. portegna was the highest at 24 (195.5%) and 48 hours (235%). At the last evaluation day, H. paraguayensis preyed the same amount (185.75%) than H. portegna, followed by H. mastrucata (109.51%). Resulst of predation daily indexes displayed chronological activity for each isolate, where H. portegna was very reactive at first 24 hours, H. mastrucata raised its predacious activity in 48 hours being constant from this time on and H. paraguayensis pointed out itself at 72 hours. Other species presented low predation and growth indexes throughout experiment.


2017 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Tatsuya Ohike ◽  
Minori Maeda ◽  
Tetsuya Matsukawa ◽  
Masahiro Okanami ◽  
Shin’ichiro Kajiyama ◽  
...  

Rhizoctonia solani is fungal plant pathogen that infects many different host plants. Recently, biological control agents that are friendly to the environment and ecosystems have attracted much attention as an alternative to the use of chemical fungicide which have been used worldwide to control soil borne pathogens including R. solani. In this study, 53 strains of actinomycetes isolated from environmental soils, and antifungal activities of them were assessed by the dual culture assay. Strain KT showed strong inhibitory activities against 8 phytopathogenic fungi. A great suppressive effect on R. solani growth was observed in the inoculation test of plants using cucumber and chin-geng-sai. In addition, infection of Bipolaris oryzae also could be suppressed in the detached leaf assay using oats. As a result of genetic analysis, it was shown that KT was a species closely related to Streptomyces lavenduligriseus NRRL B-3173T. However, as far as we know, there is no report for biological control agents using S. lavenduligriseus. This study suggests that the strain KT may useful as biological control agents to suppress various crop diseases.


2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


Author(s):  
Castañeda Alvarez Estefania ◽  
Sánchez Leal Ligia

For farmers the use of agrochemicals is the preferred method to control pests and diseases. Considering the market demand for biological control products, the encapsulation could be a competent alternative to current commercial formulations for cellular viability and controlled release. The purpose of this study was to use ionic gelation with sodium alginate, starch and maltodextrin to immobilize Bacillus subtilis and to evaluate the biocontrol effect against Fusarium oxysporum f. sp. lycopersici in vitro. The matrix with a concentration of 2% sodium alginate, 1% starch, and 1% maltodextrin is a suitable method for cellular viability and biological control activity against Fusarium oxysporum f. sp. lycopersici, with a reduction of mycelial growth of 49.6% and a survival rate for Bacillus subtilis of 98.05% (p less than 0.0001).The use of immobilized bacteria as biological control agents are sustainable and effective bio-inputs that could be used at industrial scale and benefit the tomato crops against attack by Fusarium oxysporum f. sp. lycopersici.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
SUPRIYANTO ◽  
PURWANTO ◽  
S.H. POROMARTO ◽  
SUPYANI

Abstract. Supriyanto, Purwanto, Poromarto SH, Supyani. 2020. Evaluation of in vitro antagonistic activity of fungi from peatlands against Ganoderma species under acidic conditions. Biodiversitas 21: 2935-2945. The use of peatlands is a significant contributor to the world’s palm oil production. A serious problem of oil palm plantations in peatlands is the high incidence of basal stem rot (BSR) disease caused by Ganoderma, which has a higher attack rate than on mineral soils. There is no effective way to control Ganoderma in peatlands. At present, the effort for the same focuses on environment-friendly biological methods; however, this is constrained by the unavailability of appropriate biological agents for peatlands. The development of biological control agents for peatlands is hampered by limited data on biological control of Ganoderma in peatlands. This research was conducted to evaluate the in vitro antagonistic activity of fungi isolated from a peatland in acidic pH conditions. Twenty-seven Ganoderma-antagonistic fungi from peatland were evaluated for their activity and their ability to antagonism in vitro within a pH range of 2-7. The results show that most antagonistic fungi from peatland, based on biomass weight, the sporulation ability, and germination of conidium, were able to grow optimally at pH 3.0-4.0, indicating that most of the Ganoderma-antagonistic fungi from peatland can be used as biological control agents for BSR on oil palms in peatlands.


Sign in / Sign up

Export Citation Format

Share Document