scholarly journals Evaluation of in vitro antagonistic activity of fungi from peatlands against Ganoderma species under acidic condition

2020 ◽  
Vol 21 (7) ◽  
Author(s):  
SUPRIYANTO ◽  
PURWANTO ◽  
S.H. POROMARTO ◽  
SUPYANI

Abstract. Supriyanto, Purwanto, Poromarto SH, Supyani. 2020. Evaluation of in vitro antagonistic activity of fungi from peatlands against Ganoderma species under acidic conditions. Biodiversitas 21: 2935-2945. The use of peatlands is a significant contributor to the world’s palm oil production. A serious problem of oil palm plantations in peatlands is the high incidence of basal stem rot (BSR) disease caused by Ganoderma, which has a higher attack rate than on mineral soils. There is no effective way to control Ganoderma in peatlands. At present, the effort for the same focuses on environment-friendly biological methods; however, this is constrained by the unavailability of appropriate biological agents for peatlands. The development of biological control agents for peatlands is hampered by limited data on biological control of Ganoderma in peatlands. This research was conducted to evaluate the in vitro antagonistic activity of fungi isolated from a peatland in acidic pH conditions. Twenty-seven Ganoderma-antagonistic fungi from peatland were evaluated for their activity and their ability to antagonism in vitro within a pH range of 2-7. The results show that most antagonistic fungi from peatland, based on biomass weight, the sporulation ability, and germination of conidium, were able to grow optimally at pH 3.0-4.0, indicating that most of the Ganoderma-antagonistic fungi from peatland can be used as biological control agents for BSR on oil palms in peatlands.


1987 ◽  
Vol 33 (10) ◽  
pp. 850-856 ◽  
Author(s):  
G. Vannacci ◽  
G. E. Harman

Forty-two microorganisms were tested as biological control agents against Alternaria raphani and A. brassicicola. Tests were conducted for in vitro antagonistic ability, for ability to control the pathogens on naturally infected seeds germinated on moistened blotters, and in planting mix in growth chamber studies, and for their ability to reduce pod infection. The organisms tested were obtained from cruciferous seeds or were strains already identified as being effective against soil-borne Pythium species. The blotter test indicated that six organisms increased both the number of healthy seedlings and the number of seedlings produced from A. raphani infected radish seeds. An additional seven strains improved either germination or increased the number of healthy seedlings. Twenty-nine organisms increased the number of healthy cabbage seedlings from A. brassicicola infected seeds, but total germination was not modified by any treatment. Experiments in planting mix showed that five antagonists (Chaetomium globosum, two strains of Trichoderma harzianum, T. koningii, and Fusarium sp.) increased the number of healthy plants in both radish samples tested, while four additional antagonists provided a significant increase in only one of the samples tested. The five antagonists that consistently increased numbers of healthy radish seedlings also decreased pod infection by A. raphani. None were as effective as iprodrone, however. Several effective antagonists were found to be mycoparasitic against Alternaria spp. Some strains of Trichoderma previously found to be effective against Pythium spp. were also effective against Alternaria spp., indicating that these strains have a wide host range.



2018 ◽  
Vol 10 (3) ◽  
pp. 276
Author(s):  
Cleonice Lubian ◽  
Danielle Dutra Martinha ◽  
Roberto Luis Portz ◽  
Alexandre Gonçalves dos Santos e Silva Filho ◽  
Vagner Gularte Cortez ◽  
...  

Biological control is a method of controlling pests through the use of other living organisms. The purposes of this study were to test Hohenbuehelia species as biological control agents against Panagrellus redivivus in vitro, evaluating nematodes influence on mycelia growth; establishing daily indexes for predation and growth and setting predation percentage. Five species previously identified as 436-Hohenbuehelia mastrucata (Nematoctonus hamatus), 528-H. bullulifera (not described so far), 581-H. paraguayensis (N. sp.), 582-H. sp. (N. sp.) and 631-H. portegna (N. campylosporus) were submitted to anamorphic purification directly from basidioma. Afterwards, 100 nematodes were added to each pure colony for predation test. Evaluation started right after 24 hours of nematode-fungus interaction. Immobilized and/or penetrated nematodes were counted and mycelia growth was measured. Results were subjected to variance analyses. Hohenbuehelia mastrucata had the best performance in growth speed, followed by H. portegna and H. paraguayensis; Nematodes multiplyied much but none specie grew more as an influence of their movement under mycelium, however all species formed trap devices and some of them produced adhesive or repelent substances. Trap devices were formed in control plates also. The plates of H. paraguayensis without nematodes grew more than treatments. Cumulative predation of H. portegna was the highest at 24 (195.5%) and 48 hours (235%). At the last evaluation day, H. paraguayensis preyed the same amount (185.75%) than H. portegna, followed by H. mastrucata (109.51%). Resulst of predation daily indexes displayed chronological activity for each isolate, where H. portegna was very reactive at first 24 hours, H. mastrucata raised its predacious activity in 48 hours being constant from this time on and H. paraguayensis pointed out itself at 72 hours. Other species presented low predation and growth indexes throughout experiment.



2017 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Tatsuya Ohike ◽  
Minori Maeda ◽  
Tetsuya Matsukawa ◽  
Masahiro Okanami ◽  
Shin’ichiro Kajiyama ◽  
...  

Rhizoctonia solani is fungal plant pathogen that infects many different host plants. Recently, biological control agents that are friendly to the environment and ecosystems have attracted much attention as an alternative to the use of chemical fungicide which have been used worldwide to control soil borne pathogens including R. solani. In this study, 53 strains of actinomycetes isolated from environmental soils, and antifungal activities of them were assessed by the dual culture assay. Strain KT showed strong inhibitory activities against 8 phytopathogenic fungi. A great suppressive effect on R. solani growth was observed in the inoculation test of plants using cucumber and chin-geng-sai. In addition, infection of Bipolaris oryzae also could be suppressed in the detached leaf assay using oats. As a result of genetic analysis, it was shown that KT was a species closely related to Streptomyces lavenduligriseus NRRL B-3173T. However, as far as we know, there is no report for biological control agents using S. lavenduligriseus. This study suggests that the strain KT may useful as biological control agents to suppress various crop diseases.



2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. M. Rahman ◽  
M. E. Ali ◽  
A. A. Khan ◽  
A. M. Akanda ◽  
Md. Kamal Uddin ◽  
...  

A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacteriumErwinia carotovorasubsp.carotovora(Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was testedin vitroagainst the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited thein vitrogrowth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genusBacillusand the isolate E-45 asLactobacillussp. The stronger antagonistic activity against Ecc P-138 was found in E-65in vitroscreening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.



1999 ◽  
Vol 50 (8) ◽  
pp. 1469 ◽  
Author(s):  
S. Simpfendorfer ◽  
T. J. Harden ◽  
G. M. Murray

The interaction between 29 isolates of Rhizobium and the in vitro growth of 3 strains of Phytophthora clandestina was investigated to determine the potential of these bacteria as biological control agents against root rot of subterranean clover (Trifolium subterraneum L.). The biological control activity of Rhizobium on the severity of root disease in seedlings was also investigated under glasshouse conditions. Thirteen of the 29 Rhizobium isolates caused significant reductions in the hyphal growth of the 3 P. clandestina isolates examined. Inoculation of seedlings with Rhizobium trifolii reduced the severity of root disease by 14–58% with corresponding increases in dry matter production of 20–73%. These results indicate that Rhizobium species have potential as biological control agents against the root rot of T. subterraneum seedlings caused by P. clandestina.



2017 ◽  
Vol 202 ◽  
pp. 11-20 ◽  
Author(s):  
Morgane Comby ◽  
Marie Gacoin ◽  
Mathilde Robineau ◽  
Fanja Rabenoelina ◽  
Sébastien Ptas ◽  
...  


2021 ◽  
Vol 25 (01) ◽  
pp. 75-80
Author(s):  
Desi Rejeki

Bacterial leaf blight (BLB) is a disease caused by Xanthomonas oryzae pv. oryzae (Xoo) of rice in rice-producing countries including Indonesia and attack rice in all stages of growth. In the advanced, crop production will be decreased by up to 50–70%. Recently, the practical efforts to overcome the problem by using resistant varieties, antibiotics, and sanitation; however, the ability of the pathogen to forms the new virulent pathotypes is noteworthy. Alternatively, the pathogen could be environmental-friendly controlled by utilizing bacteriophages as biological control agents because of their specific characteristics to their bacterial hosts. This research aimed to obtain information about the characteristic of the first isolated bacteriophages from Indonesia. The result showed that two bacteriophages had been isolated from soil in Arjasa Jember and soil in Gadingan Situbondo, namely phage XooX1IDN and phage XooX2IDN, respectively. The two phages were inactivated at 80ºC and stable at pH within the range of 6 to 8. The phage XooX1IDN has a genome size of approximately 39 kb, while phage XooX2IDN had a genome size 38 kb. Morphologically, both phages possessed the family of Myoviridae. Phage biocontrol in vitro assay showed that both phages significantly reduced the growth of BLB pathogen, indicating that both phages potentially, as biological control agents for BLB disease in rice. © 2021 Friends Science Publishers



Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 420
Author(s):  
Angela Billar de Almeida ◽  
Jonathan Concas ◽  
Maria Doroteia Campos ◽  
Patrick Materatski ◽  
Carla Varanda ◽  
...  

Grapevine trunk diseases (GTDs) are the most widespread fungal diseases, affecting grapevines in all the major growing regions of the world, and their complete eradication is still not possible. Aiming to search alternatives to avoid the spread and high incidence of these diseases, the present work intended to molecularly identify the grapevine endophytic community, the phytopathogenic fungi associated with GTDs in vineyards within the Alentejo region, and to test potential antagonist microorganisms as biological control candidates against GTDs-associated fungi. Grapevine endophytic community showed a wide variety of fungi in GTDs’ asymptomatic and symptomatic plants, nine of them previously described as GTDs-associated fungi. GTDs prevalent fungi identified in symptomatic plants were Diaporthe sp., Neofusicoccum sp., and H. viticola. Almost all these fungi were also detected in asymptomatic plants, which shows the importance of investigating the interactions of fungal communities and confirms the need for early diagnosis of these diseases. Direct inhibition antagonism tests were performed among identified endophytes and GTDs phytopathogenic fungi, and all the endophyte fungi showed potential as biocontrol agents. Our findings suggest that endophytes are promising candidates for their use in biological control due to their antagonistic activity against the mycelia growth of some GTDs-associated fungi.



2016 ◽  
Vol 16 (3) ◽  
Author(s):  
Eder Marques ◽  
Irene Martins ◽  
Mariana de Oliveira Cardoso Cunha ◽  
Marcello Arrais Lima ◽  
João Batista Tavares da Silva ◽  
...  

Abstract Forty-nine isolates of Trichoderma from the Brazilian Midwest were evaluated for their antagonistic activity in vitro against Sclerotinia sclerotiorum (causal agent of white mold), which were then identified based on their nuclear ribosomal ITS sequences. Paired culture tests showed that all isolates exhibited some antagonism, with a maximum of 77% mycelial inhibition and complete inhibition of sclerotia production. Two isolates were found to be the most promising biocontrol agents, considering both antagonistic parameters (CEN1253 - T. koningiopsis and CEN1265 - T. brevicompactum). Five different species were identified: T. harzianum (23), T. spirale (9), T. koningiopsis (8), T. brevicompactum (7) and T. asperellum (2). These isolates are stored in the Embrapa Fungi Collection for Biological Control and the information obtained in the experiments will be incorporated into the database of biological assets within the genetic resources information system (Allele) and be made available for further studies.



Sign in / Sign up

Export Citation Format

Share Document