Tailored IPN Hydrogel Bead of Sodium Carboxymethyl Cellulose and Sodium Carboxymethyl Xanthan Gum for Controlled Delivery of Diclofenac Sodium

2013 ◽  
Vol 52 (8) ◽  
pp. 795-805 ◽  
Author(s):  
Shiv Sankar Bhattacharya ◽  
Seema Shukla ◽  
Subham Banerjee ◽  
Purojit Chowdhury ◽  
Prithviraj Chakraborty ◽  
...  
2012 ◽  
Vol 30 (No. 5) ◽  
pp. 442-445 ◽  
Author(s):  
Z. Panovská ◽  
A. Váchová ◽  
J. Pokorný

The effect of thickening agents &ndash; methyl cellulose, hydroxyethyl cellulose, sodium carboxymethyl cellulose, and xanthan gum &ndash; solutions on the sensory viscosity was investigated in the concentration range of 0&ndash;0.8%. The perceived viscosity was proportional to the logarithm of kinematic viscosity in the presence of citric and malic acids. The viscosity was inversely proportional to the acidity at the viscosity levels higher than 10 mm<sup>2</sup>/s. A liquid of high viscosity thus possess lower acidity than aqueous or low-viscosity solutions. No significant differences were found between the effects of different thickening agents. &nbsp;


2012 ◽  
Vol 32 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Tatiana Dias Leite ◽  
Joel Fernando Nicoleti ◽  
Ana Lúcia Barretto Penna ◽  
Célia Maria Landi Franco

Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.


2009 ◽  
Vol 40 (2) ◽  
pp. 19-26 ◽  
Author(s):  
Soojung LEE ◽  
Yasutsugu MIWA ◽  
Ryohei NISHIMURA ◽  
Ung-il CHUNG ◽  
Shigeki SUZUKI ◽  
...  

2020 ◽  
Vol 23 (03) ◽  
pp. 33-49
Author(s):  
Ni’matul Mauludiyah ◽  
Devi Ayu Aprillia ◽  
Viddy Agustian Rosyidi ◽  
Lusia Oktora Ruma Kumala Sari

Sign in / Sign up

Export Citation Format

Share Document