scholarly journals Effect of addition of different hydrocolloids on pasting, thermal, and rheological properties of cassava starch

2012 ◽  
Vol 32 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Tatiana Dias Leite ◽  
Joel Fernando Nicoleti ◽  
Ana Lúcia Barretto Penna ◽  
Célia Maria Landi Franco

Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.

2013 ◽  
Vol 52 (8) ◽  
pp. 795-805 ◽  
Author(s):  
Shiv Sankar Bhattacharya ◽  
Seema Shukla ◽  
Subham Banerjee ◽  
Purojit Chowdhury ◽  
Prithviraj Chakraborty ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 203-212
Author(s):  
Ozioma Forstinus Nwabor ◽  
Sudarshan Singh ◽  
Dwi Marlina ◽  
Supayang Piyawan Voravuthikunchai

Abstract Crude ethanolic extract of Eucalyptus camaldulensis was encapsulated with sodium alginate–sodium carboxymethyl cellulose (CMC) using freeze-drying techniques. The microcapsules were characterized for particle size, morphology, physicochemical parameters, and micromeritics properties. Antioxidant and antimicrobial activities of the microcapsules were also demonstrated. Results revealed an irregular-shaped microparticles with a mean diameter ranging from 6.7 to 26.6 µm. Zeta potential and polydispersity index ranged from −17.01 to 2.23 mV and 0.34 to 0.49, respectively. Percentage yield ranged between 70.4 and 81.5 per cent whereas encapsulation efficiency ranged between 74.2 ± 0.011 and 82.43 ± 0.77 per cent. Swelling index and solubility varied inversely with extract concentration, with a range of 54.4%–84.0% and 18.8%–22.2%, respectively. Antioxidant activities varied directly with the concentration of the extract. Minimum inhibitory and minimum bactericidal concentrations of the microcapsules against Gram-positive foodborne pathogens ranged from 0.19 to 3.12 and 0.19–12.25 mg/ml, respectively. The Higuchi model indicated a time-dependent, delayed, and regulated release of polyphenols at 37°C. The results suggested that alginate–CMC possessed good encapsulant properties that preserved the bioactive extract, thus might be employed for application of natural products in food systems.


2012 ◽  
Vol 30 (No. 5) ◽  
pp. 442-445 ◽  
Author(s):  
Z. Panovská ◽  
A. Váchová ◽  
J. Pokorný

The effect of thickening agents &ndash; methyl cellulose, hydroxyethyl cellulose, sodium carboxymethyl cellulose, and xanthan gum &ndash; solutions on the sensory viscosity was investigated in the concentration range of 0&ndash;0.8%. The perceived viscosity was proportional to the logarithm of kinematic viscosity in the presence of citric and malic acids. The viscosity was inversely proportional to the acidity at the viscosity levels higher than 10 mm<sup>2</sup>/s. A liquid of high viscosity thus possess lower acidity than aqueous or low-viscosity solutions. No significant differences were found between the effects of different thickening agents. &nbsp;


2013 ◽  
Vol 117 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Rungnaphar Pongsawatmanit ◽  
Prawta Chantaro ◽  
Katsuyoshi Nishinari

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2137 ◽  
Author(s):  
Jie Liu ◽  
Tiantian Yuan ◽  
Ruijuan Wang ◽  
Yawei Liu ◽  
Guihong Fang

Corn flour was prepared by wet-milling with the treatment of neutral protease and the gelatinization, thermal and rheological properties were analyzed. Tortilla was prepared with enzyme treated corn flour (ECF) and additives (xanthan gum and cassava starch) and the properties were analyzed. Compared with dry-milling corn flour (DCF) and wet-milling corn flour (WCF), the ECF had less average particle size (16.74 μm), higher peak viscosity and higher final viscosity of 2997 cP and 3300 cP, respectively. The thermal properties showed that ECF had higher ∆H and lower To, Tp and Tc. The G′ of ECF gel (6%, w/w) was higher than that of DCF gel and WCF gel. Dynamic viscoelastic measurement indicated that the tortillas made of ECF had lower G′ and G″ over the frequency range (0.1–100 rad/s) after adding xanthan gum and cassava starch. The gel structure of tortillas made of ECF was homogeneous in distribution of pores. The gelatinization, thermal and rheological properties of corn flour were improved by addition of neutral protease. The addition of xanthan gum and cassava starch helped to make the tortilla with porous structure and good sensory quality.


Sign in / Sign up

Export Citation Format

Share Document